DocExtraction / app.py
bharathrajcl's picture
Update app.py
8743ab7
raw
history blame
1.54 kB
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 25 21:37:33 2022
@author: Bharathraj C L
"""
import streamlit as st
import mmcv
import os
import numpy as np
from PIL import Image
from mmdet.apis import init_detector, inference_detector, show_result_pyplot
from pathlib import Path
st.set_option('deprecation.showPyplotGlobalUse', False)
st.title("Table Detection from Images")
@st.cache
def load_model():
# Make sure to pass `pretrained` as `True` to use the pretrained weights:
#new_model = tf.keras.models.load_model('mobilenetv2_100noise.h5')
config_file = 'cascade_mask_rcnn_hrnetv2p_w32_20e.py'
checkpoint_file = 'epoch_36.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')
return new_model
def main():
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
model = load_model()
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)
directory = "tempDir"
path = os.path.join(os.getcwd(), directory)
p = Path(path)
if not p.exists():
os.mkdir(p)
with open(os.path.join(path, uploaded_file.name),"wb") as f:
f.write(uploaded_file.getbuffer())
file_loc = os.path.join(path, uploaded_file.name)
result = inference_detector(model, file_loc)
st.pyplot(show_result_pyplot(file_loc, result,('Bordered', 'cell', 'Borderless'), score_thr=0.85))
if __name__ == '__main__':
main()