Spaces:
Sleeping
Sleeping
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
import torch | |
import numpy as np | |
from PIL import Image | |
import requests | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(url, stream=True).raw) | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
# prepare image for the model | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_depth = outputs.predicted_depth | |
# interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
) | |
# visualize the prediction | |
output = prediction.squeeze().cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype("uint8") | |
depth = Image.fromarray(formatted) |