Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
from PIL import Image | |
# Load model & processor once at startup | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
def smoldocling_readimage(image, prompt_text): | |
""" | |
Extract text and structured content from document images using SmolDocling model. | |
This function processes document images (PDFs, scanned documents, screenshots, etc.) | |
and converts them to structured text format based on the provided prompt. It uses | |
the SmolDocling-256M-preview model for image-to-text conversion with chat-based | |
prompting. | |
Args: | |
image (PIL.Image.Image): The input document image to process. Should be a PIL | |
Image object containing a document, text, or any visual content that needs | |
to be converted to text. | |
prompt_text (str): The instruction or prompt text that guides the model's | |
output format. Supported prompts include: | |
Content Conversion: | |
- "Convert this page to docling." - Full conversion to DocTags representation | |
- "Convert chart to table." - Convert charts to table format | |
- "Convert formula to LaTeX." - Convert mathematical formulas to LaTeX | |
- "Convert code to text." - Convert code blocks to readable text | |
- "Convert table to OTSL." - Convert tables to OTSL format (Lysak et al., 2023) | |
OCR and Location-based Actions: | |
- "OCR the text in a specific location: <loc_155><loc_233><loc_206><loc_237>" - Extract text from specific coordinates | |
- "Identify element at: <loc_247><loc_482><loc_252><loc_486>" - Identify element type at coordinates | |
- "Find all 'text' elements on the page, retrieve all section headers." - Extract section headers | |
- "Detect footer elements on the page." - Identify footer content | |
Returns: | |
str: The extracted and formatted text content from the image, cleaned of | |
special tokens and whitespace. The format depends on the prompt_text | |
provided. | |
Example: | |
>>> from PIL import Image | |
>>> img = Image.open("document.pdf") | |
>>> result = smoldocling_readimage(img, "Convert to docling") | |
>>> print(result) # Returns structured document content | |
Note: | |
- The function is optimized for document images but can handle any image | |
containing text | |
- Processing time depends on image size and complexity | |
- Maximum output length is limited to 1024 new tokens | |
""" | |
messages = [ | |
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=1024) | |
prompt_length = inputs.input_ids.shape[1] | |
generated = outputs[:, prompt_length:] | |
result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
return result.replace("<end_of_utterance>", "").strip() | |
# Gradio UI | |
demo = gr.Interface( | |
fn=smoldocling_readimage, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"), | |
], | |
outputs="text", | |
title="SmolDocling Web App", | |
description="Upload a document image and convert it to structured docling format." | |
) | |
demo.launch(mcp_server=True) |