|
|
|
|
|
|
|
import math |
|
import pandas as pd |
|
import numpy as np |
|
from sqlalchemy.orm import Session |
|
import pandas as pd |
|
|
|
def get_matchups_models(df): |
|
n_rows = len(df) |
|
model_indices, models = pd.factorize(pd.concat([df["model_a"], df["model_b"]])) |
|
matchups = np.column_stack([model_indices[:n_rows], model_indices[n_rows:]]) |
|
return matchups, models.to_list() |
|
|
|
|
|
def preprocess_for_elo(df): |
|
""" |
|
in Elo we want numpy arrays for matchups and outcomes |
|
matchups: int32 (N,2) contains model ids for the competitors in a match |
|
outcomes: float64 (N,) contains 1.0, 0.5, or 0.0 representing win, tie, or loss for model_a |
|
""" |
|
matchups, models = get_matchups_models(df) |
|
outcomes = np.full(len(df), 0.5) |
|
outcomes[df["winner"] == "model_a"] = 1.0 |
|
outcomes[df["winner"] == "model_b"] = 0.0 |
|
return matchups, outcomes, models |
|
|
|
|
|
def compute_elo(df, k=4.0, base=10.0, init_rating=1000.0, scale=400.0): |
|
matchups, outcomes, models = preprocess_for_elo(df) |
|
alpha = math.log(base) / scale |
|
ratings = np.full(shape=(len(models),), fill_value=init_rating) |
|
for (model_a_idx, model_b_idx), outcome in zip(matchups, outcomes): |
|
prob = 1.0 / ( |
|
1.0 + math.exp(alpha * (ratings[model_b_idx] - ratings[model_a_idx])) |
|
) |
|
update = k * (outcome - prob) |
|
ratings[model_a_idx] += update |
|
ratings[model_b_idx] -= update |
|
return {model: ratings[idx] for idx, model in enumerate(models)} |
|
|
|
|
|
def compute_elo_from_votes(db: Session): |
|
|
|
votes = db.query(Vote).all() |
|
|
|
|
|
data = { |
|
"model_a": [vote.model_a for vote in votes], |
|
"model_b": [vote.model_b for vote in votes], |
|
"winner": [vote.winner for vote in votes] |
|
} |
|
df = pd.DataFrame(data) |
|
|
|
|
|
elo_scores = compute_elo(df) |
|
|
|
return elo_scores |