| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import os | |
| HF_TOKEN = os.getenv('HF_TOKEN') | |
| client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=HF_TOKEN) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| code: str, | |
| ): | |
| messages = [{"role": "system", "content": "Tu es un assistant appelé Fabrice"}] | |
| print(code) | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0] + ' \n' + code}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message + ' \n' + code}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=512, | |
| stream=True, | |
| temperature=0.7, | |
| top_p=0.4, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| with gr.Blocks(analytics_enabled=True) as demo: | |
| code = gr.Code(language="python") | |
| gr.ChatInterface(respond, additional_inputs=code) | |
| demo.launch() |