Spaces:
Sleeping
Sleeping
AlzbetaStrompova
commited on
Commit
·
f3898ef
1
Parent(s):
2a9fe7e
change output
Browse files- app.py +6 -3
- website_script.py +13 -1
app.py
CHANGED
@@ -6,7 +6,11 @@ tokenizer, model, gazetteers_for_matching = load()
|
|
6 |
print("Loaded model")
|
7 |
|
8 |
examples = [
|
9 |
-
"Masarykova univerzita",
|
|
|
|
|
|
|
|
|
10 |
]
|
11 |
|
12 |
def ner(text):
|
@@ -15,8 +19,7 @@ def ner(text):
|
|
15 |
|
16 |
demo = gr.Interface(ner,
|
17 |
gr.Textbox(placeholder="Enter sentence here..."),
|
18 |
-
|
19 |
-
#gr.HighlightedText(), # TODO https://www.gradio.app/guides/named-entity-recognition
|
20 |
examples=examples)
|
21 |
|
22 |
if __name__ == "__main__":
|
|
|
6 |
print("Loaded model")
|
7 |
|
8 |
examples = [
|
9 |
+
"Masarykova univerzita se nachází v Brně.",
|
10 |
+
"Barack Obama navštívil Prahu minulý týden.",
|
11 |
+
"Angela Merkelová se setkala s francouzským prezidentem v Paříži.",
|
12 |
+
"Karel Čapek napsal knihu R.U.R., která byla poprvé představena v Praze.",
|
13 |
+
"Nobelova cena za fyziku byla udělena týmu vědců z MIT."
|
14 |
]
|
15 |
|
16 |
def ner(text):
|
|
|
19 |
|
20 |
demo = gr.Interface(ner,
|
21 |
gr.Textbox(placeholder="Enter sentence here..."),
|
22 |
+
gr.HighlightedText(show_legend=True,),
|
|
|
23 |
examples=examples)
|
24 |
|
25 |
if __name__ == "__main__":
|
website_script.py
CHANGED
@@ -44,4 +44,16 @@ def run(tokenizer, model, gazetteers_for_matching, text):
|
|
44 |
output = model(input_ids=input_ids, attention_mask=attention_mask, per=per, org=org, loc=loc).logits
|
45 |
predictions = torch.argmax(output, dim=2).tolist()
|
46 |
predicted_tags = [[model.config.id2label[idx] for idx in sentence] for sentence in predictions]
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
output = model(input_ids=input_ids, attention_mask=attention_mask, per=per, org=org, loc=loc).logits
|
45 |
predictions = torch.argmax(output, dim=2).tolist()
|
46 |
predicted_tags = [[model.config.id2label[idx] for idx in sentence] for sentence in predictions]
|
47 |
+
|
48 |
+
softmax = torch.nn.Softmax(dim=2)
|
49 |
+
scores = softmax(output).squeeze(0).tolist()
|
50 |
+
result = []
|
51 |
+
for pos, entity, score in zip(tokenized_inputs.offset_mapping, predicted_tags[0], scores):
|
52 |
+
result.append({
|
53 |
+
"start": pos[0],
|
54 |
+
"end": pos[1],
|
55 |
+
"entity": entity,
|
56 |
+
"score": max(score),
|
57 |
+
"word": text[pos[0]:pos[1]],
|
58 |
+
})
|
59 |
+
return result
|