Spaces:
Runtime error
Runtime error
besarismaili
commited on
Commit
•
4b82956
1
Parent(s):
d631554
Upload 2 files
Browse files- app.py +47 -19
- requirements.txt +1 -1
app.py
CHANGED
@@ -3,13 +3,13 @@ from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
-
|
7 |
-
|
8 |
|
9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
11 |
|
12 |
-
def
|
13 |
# prepare image for the model
|
14 |
encoding = feature_extractor(image, return_tensors="pt")
|
15 |
|
@@ -17,7 +17,7 @@ def process_image(image):
|
|
17 |
with torch.no_grad():
|
18 |
outputs = model(**encoding)
|
19 |
predicted_depth = outputs.predicted_depth
|
20 |
-
|
21 |
# interpolate to original size
|
22 |
prediction = torch.nn.functional.interpolate(
|
23 |
predicted_depth.unsqueeze(1),
|
@@ -29,18 +29,46 @@ def process_image(image):
|
|
29 |
formatted = (output * 255 / np.max(output)).astype('uint8')
|
30 |
img = Image.fromarray(formatted)
|
31 |
return img
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
+
import os
|
7 |
+
import cv2
|
8 |
|
9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
11 |
|
12 |
+
def get_image_depth(image):
|
13 |
# prepare image for the model
|
14 |
encoding = feature_extractor(image, return_tensors="pt")
|
15 |
|
|
|
17 |
with torch.no_grad():
|
18 |
outputs = model(**encoding)
|
19 |
predicted_depth = outputs.predicted_depth
|
20 |
+
|
21 |
# interpolate to original size
|
22 |
prediction = torch.nn.functional.interpolate(
|
23 |
predicted_depth.unsqueeze(1),
|
|
|
29 |
formatted = (output * 255 / np.max(output)).astype('uint8')
|
30 |
img = Image.fromarray(formatted)
|
31 |
return img
|
32 |
+
|
33 |
+
|
34 |
+
def process_sequence(files):
|
35 |
+
file_paths = [file.name for file in files]
|
36 |
+
for file_path in file_paths:
|
37 |
+
image = Image.open(file_path)
|
38 |
+
depth_image = get_image_depth(image)
|
39 |
+
depth_image.save(os.path.join('output', os.path.basename(file_path)))
|
40 |
+
return file_paths, gr.Info("This is some info")
|
41 |
+
|
42 |
+
title = "# Depth estimation demo"
|
43 |
+
description = "Demo for Intel's DPT"
|
44 |
+
|
45 |
+
with gr.Blocks() as iface:
|
46 |
+
|
47 |
+
gr.Markdown(title)
|
48 |
+
gr.Markdown(description)
|
49 |
+
|
50 |
+
with gr.Row():
|
51 |
+
|
52 |
+
with gr.Column():
|
53 |
+
with gr.Tab(label='Singel image'):
|
54 |
+
image = gr.Image(type="pil")
|
55 |
+
button = gr.Button(value="Get depth", interactive=True, variant="primary")
|
56 |
+
image_output=gr.Image(type="pil", label="predicted depth")
|
57 |
+
|
58 |
+
with gr.Column():
|
59 |
+
with gr.Tab(label='Frames'):
|
60 |
+
file_output = gr.File(visible=False)
|
61 |
+
upload_button = gr.UploadButton("Select directory", file_types=["image"], file_count="directory")
|
62 |
+
upload_button.upload(process_sequence, upload_button, file_output)
|
63 |
+
|
64 |
+
#output=gr.Video(label="Predicted Depth")
|
65 |
+
message=gr.Text(value="Check output folder for the depth frames.")
|
66 |
+
|
67 |
+
button.click(
|
68 |
+
fn=get_image_depth,
|
69 |
+
inputs=[image],
|
70 |
+
outputs=[image_output]
|
71 |
+
)
|
72 |
+
|
73 |
+
iface.queue(concurrency_count=1)
|
74 |
+
iface.launch(debug=True, enable_queue=True)
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
torch
|
2 |
git+https://github.com/nielsrogge/transformers.git@add_dpt_redesign#egg=transformers
|
3 |
numpy
|
4 |
-
Pillow
|
|
|
1 |
torch
|
2 |
git+https://github.com/nielsrogge/transformers.git@add_dpt_redesign#egg=transformers
|
3 |
numpy
|
4 |
+
Pillow
|