Spaces:
Sleeping
Sleeping
bertugmirasyedi
commited on
Commit
·
6b67b82
1
Parent(s):
99b3772
First commit
Browse files- Dockerfile +11 -0
- requirements.txt +8 -0
- search.py +308 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["uvicorn", "search:app", "--host", "0.0.0.0", "--port", "7860"]
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.95.0
|
2 |
+
flair==0.11.3
|
3 |
+
openai==0.27.0
|
4 |
+
optimum==1.7.1
|
5 |
+
pyalex==0.7
|
6 |
+
requests==2.25.1
|
7 |
+
sentence_transformers==2.2.2
|
8 |
+
transformers==4.26.1
|
search.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
import sys
|
4 |
+
|
5 |
+
# Set the maximum recursion depth to 10000
|
6 |
+
sys.setrecursionlimit(10000)
|
7 |
+
|
8 |
+
# Define the FastAPI app
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Add the CORS middleware to the app
|
12 |
+
app.add_middleware(
|
13 |
+
CORSMiddleware,
|
14 |
+
allow_origins=["*"],
|
15 |
+
allow_credentials=True,
|
16 |
+
allow_methods=["*"],
|
17 |
+
allow_headers=["*"],
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
@app.get("/search={query}&similarity={similarity}")
|
22 |
+
def search(query, similarity=False):
|
23 |
+
import time
|
24 |
+
import requests
|
25 |
+
|
26 |
+
start_time = time.time()
|
27 |
+
|
28 |
+
# Set the API endpoint and query parameters
|
29 |
+
url = "https://www.googleapis.com/books/v1/volumes"
|
30 |
+
params = {"q": str(query), "printType": "books", "maxResults": 30}
|
31 |
+
|
32 |
+
# Send a GET request to the API with the specified parameters
|
33 |
+
response = requests.get(url, params=params)
|
34 |
+
|
35 |
+
# Initialize the lists to store the results
|
36 |
+
titles = []
|
37 |
+
authors = []
|
38 |
+
publishers = []
|
39 |
+
descriptions = []
|
40 |
+
images = []
|
41 |
+
|
42 |
+
# Parse the response JSON and append the results
|
43 |
+
data = response.json()
|
44 |
+
|
45 |
+
for item in data["items"]:
|
46 |
+
volume_info = item["volumeInfo"]
|
47 |
+
try:
|
48 |
+
titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
|
49 |
+
except KeyError:
|
50 |
+
titles.append(volume_info["title"])
|
51 |
+
|
52 |
+
try:
|
53 |
+
descriptions.append(volume_info["description"])
|
54 |
+
except KeyError:
|
55 |
+
descriptions.append("Null")
|
56 |
+
|
57 |
+
try:
|
58 |
+
publishers.append(volume_info["publisher"])
|
59 |
+
except KeyError:
|
60 |
+
publishers.append("Null")
|
61 |
+
|
62 |
+
try:
|
63 |
+
authors.append(volume_info["authors"][0])
|
64 |
+
except KeyError:
|
65 |
+
authors.append("Null")
|
66 |
+
|
67 |
+
try:
|
68 |
+
images.append(volume_info["imageLinks"]["thumbnail"])
|
69 |
+
except KeyError:
|
70 |
+
images.append(
|
71 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
72 |
+
)
|
73 |
+
|
74 |
+
### Openalex ###
|
75 |
+
import pyalex
|
76 |
+
from pyalex import Works
|
77 |
+
|
78 |
+
# Add email to the config
|
79 |
+
pyalex.config.email = "ber2mir@gmail.com"
|
80 |
+
|
81 |
+
# Define a pager object with the same query
|
82 |
+
pager = Works().search(str(query)).paginate(per_page=10, n_max=10)
|
83 |
+
|
84 |
+
# Generate a list of the results
|
85 |
+
openalex_results = list(pager)
|
86 |
+
|
87 |
+
# Get the titles, descriptions, and publishers and append them to the lists
|
88 |
+
for result in openalex_results[0]:
|
89 |
+
try:
|
90 |
+
titles.append(result["title"])
|
91 |
+
except KeyError:
|
92 |
+
titles.append("Null")
|
93 |
+
|
94 |
+
try:
|
95 |
+
descriptions.append(result["abstract"])
|
96 |
+
except KeyError:
|
97 |
+
descriptions.append("Null")
|
98 |
+
|
99 |
+
try:
|
100 |
+
publishers.append(result["host_venue"]["publisher"])
|
101 |
+
except KeyError:
|
102 |
+
publishers.append("Null")
|
103 |
+
|
104 |
+
try:
|
105 |
+
authors.append(result["authorships"][0]["author"]["display_name"])
|
106 |
+
except KeyError:
|
107 |
+
authors.append("Null")
|
108 |
+
|
109 |
+
images.append(
|
110 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
111 |
+
)
|
112 |
+
|
113 |
+
### OpenAI ###
|
114 |
+
import openai
|
115 |
+
|
116 |
+
# Set the OpenAI API key
|
117 |
+
openai.api_key = "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"
|
118 |
+
|
119 |
+
# Create ChatGPT query
|
120 |
+
chatgpt_response = openai.ChatCompletion.create(
|
121 |
+
model="gpt-3.5-turbo",
|
122 |
+
messages=[
|
123 |
+
{
|
124 |
+
"role": "system",
|
125 |
+
"content": "You are a librarian. You are helping a patron find a book.",
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"role": "user",
|
129 |
+
"content": f"Recommend me 10 books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
|
130 |
+
},
|
131 |
+
],
|
132 |
+
)
|
133 |
+
|
134 |
+
# Split the response into a list of results
|
135 |
+
chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split("\n")[
|
136 |
+
2::2
|
137 |
+
]
|
138 |
+
|
139 |
+
# Define a function to parse the results
|
140 |
+
def parse_result(result, ordered_keys=["Title", "Author", "Publisher", "Summary"]):
|
141 |
+
# Create a dict to store the key-value pairs
|
142 |
+
parsed_result = {}
|
143 |
+
|
144 |
+
for key in ordered_keys:
|
145 |
+
# Split the result string by the key and append the value to the list
|
146 |
+
if key != ordered_keys[-1]:
|
147 |
+
parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
|
148 |
+
else:
|
149 |
+
parsed_result[key] = result.split(f"{key}: ")[1]
|
150 |
+
|
151 |
+
return parsed_result
|
152 |
+
|
153 |
+
ordered_keys = ["Title", "Author", "Publisher", "Summary"]
|
154 |
+
|
155 |
+
for result in chatgpt_results:
|
156 |
+
# Parse the result
|
157 |
+
parsed_result = parse_result(result, ordered_keys=ordered_keys)
|
158 |
+
|
159 |
+
# Append the parsed result to the lists
|
160 |
+
titles.append(parsed_result["Title"])
|
161 |
+
authors.append(parsed_result["Author"])
|
162 |
+
publishers.append(parsed_result["Publisher"])
|
163 |
+
descriptions.append(parsed_result["Summary"])
|
164 |
+
images.append(
|
165 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
166 |
+
)
|
167 |
+
|
168 |
+
### Prediction ###
|
169 |
+
from flair.models import TextClassifier
|
170 |
+
from flair.data import Sentence
|
171 |
+
from flair.tokenization import SegtokTokenizer
|
172 |
+
from transformers import (
|
173 |
+
AutoTokenizer,
|
174 |
+
AutoModelForSeq2SeqLM,
|
175 |
+
AutoModelForSequenceClassification,
|
176 |
+
pipeline,
|
177 |
+
)
|
178 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
179 |
+
from sentence_transformers.util import cos_sim, dot_score
|
180 |
+
from optimum.onnxruntime import (
|
181 |
+
ORTModelForSeq2SeqLM,
|
182 |
+
ORTModelForSequenceClassification,
|
183 |
+
)
|
184 |
+
from optimum.pipelines import pipeline as optimum_pipeline
|
185 |
+
|
186 |
+
# Load the classifiers
|
187 |
+
# classifier = TextClassifier.load(
|
188 |
+
# "trainers/deberta-v3-base-tasksource-nli/best-model.pt"
|
189 |
+
# )
|
190 |
+
# sentence_transformer = SentenceTransformer("all-MiniLM-L12-v2")
|
191 |
+
# cross_encoder = CrossEncoder("cross-encoder/stsb-distilroberta-base")
|
192 |
+
|
193 |
+
# Combine title, description, and publisher into a single string
|
194 |
+
combined_data = [
|
195 |
+
f"{title} {description} {publisher}"
|
196 |
+
for title, description, publisher in zip(titles, descriptions, publishers)
|
197 |
+
]
|
198 |
+
|
199 |
+
# Prepare the Sentence object
|
200 |
+
# sentences = [
|
201 |
+
# Sentence(doc, use_tokenizer=SegtokTokenizer()) for doc in combined_data
|
202 |
+
# ]
|
203 |
+
|
204 |
+
# Classify the sentences
|
205 |
+
# classifier.predict(sentences)
|
206 |
+
|
207 |
+
# Get the predicted labels
|
208 |
+
# classes = [sentence.labels for sentence in sentences]
|
209 |
+
|
210 |
+
# Define the summarizer model and tokenizer
|
211 |
+
sum_tokenizer = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
|
212 |
+
sum_model_quantized = ORTModelForSeq2SeqLM.from_pretrained(
|
213 |
+
"trainers/bart-base-samsum-quantized"
|
214 |
+
)
|
215 |
+
# sum_model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-xsum-12-6")
|
216 |
+
|
217 |
+
summarizer_pipeline = optimum_pipeline(
|
218 |
+
"summarization",
|
219 |
+
model=sum_model_quantized,
|
220 |
+
tokenizer=sum_tokenizer,
|
221 |
+
batch_size=64,
|
222 |
+
)
|
223 |
+
|
224 |
+
# Define the zero-shot classifier
|
225 |
+
zs_tokenizer = AutoTokenizer.from_pretrained(
|
226 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
227 |
+
)
|
228 |
+
# Quickfix for the tokenizer
|
229 |
+
# zs_tokenizer.model_input_names = ["input_ids", "attention_mask"]
|
230 |
+
|
231 |
+
zs_model = AutoModelForSequenceClassification.from_pretrained(
|
232 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
233 |
+
)
|
234 |
+
zs_classifier = pipeline(
|
235 |
+
"zero-shot-classification",
|
236 |
+
model=zs_model,
|
237 |
+
tokenizer=zs_tokenizer,
|
238 |
+
batch_size=64,
|
239 |
+
hypothesis_template="This book is {}.",
|
240 |
+
multi_label=True,
|
241 |
+
)
|
242 |
+
|
243 |
+
# Summarize the descriptions
|
244 |
+
summaries = [
|
245 |
+
summarizer_pipeline(description[0:1024])
|
246 |
+
if (description != None)
|
247 |
+
else [{"summary_text": "Null"}]
|
248 |
+
for description in descriptions
|
249 |
+
]
|
250 |
+
|
251 |
+
# Predict the level of the book
|
252 |
+
candidate_labels = [
|
253 |
+
"Introductory",
|
254 |
+
"Advanced",
|
255 |
+
"Academic",
|
256 |
+
"Not Academic",
|
257 |
+
"Manual",
|
258 |
+
]
|
259 |
+
|
260 |
+
# Get the predicted labels
|
261 |
+
classes = [zs_classifier(doc, candidate_labels) for doc in combined_data]
|
262 |
+
|
263 |
+
# Calculate the elapsed time
|
264 |
+
end_time = time.time()
|
265 |
+
runtime = f"{end_time - start_time:.2f} seconds"
|
266 |
+
|
267 |
+
# Calculate the similarity between the books
|
268 |
+
if similarity:
|
269 |
+
from sentence_transformers import util
|
270 |
+
|
271 |
+
sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
|
272 |
+
book_embeddings = sentence_transformer.encode(
|
273 |
+
combined_data, convert_to_tensor=True
|
274 |
+
)
|
275 |
+
|
276 |
+
similar_books = []
|
277 |
+
for i in range(len(titles)):
|
278 |
+
current_embedding = book_embeddings[i]
|
279 |
+
|
280 |
+
similarity_sorted = util.semantic_search(
|
281 |
+
current_embedding, book_embeddings, top_k=20
|
282 |
+
)
|
283 |
+
|
284 |
+
similar_books.append(
|
285 |
+
{
|
286 |
+
"sorted_by_similarity": similarity_sorted[0][1:],
|
287 |
+
}
|
288 |
+
)
|
289 |
+
|
290 |
+
# Create a list of dictionaries to store the results
|
291 |
+
results = []
|
292 |
+
for i in range(len(titles)):
|
293 |
+
results.append(
|
294 |
+
{
|
295 |
+
"id": i,
|
296 |
+
"title": titles[i],
|
297 |
+
"author": authors[i],
|
298 |
+
"publisher": publishers[i],
|
299 |
+
"image_link": images[i],
|
300 |
+
"labels": classes[i]["labels"][0:2],
|
301 |
+
"label_confidences": classes[i]["scores"][0:2],
|
302 |
+
"summary": summaries[i][0]["summary_text"],
|
303 |
+
"similar_books": similar_books[i]["sorted_by_similarity"],
|
304 |
+
"runtime": runtime,
|
305 |
+
}
|
306 |
+
)
|
307 |
+
|
308 |
+
return results
|