Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import time | |
import glob | |
import shutil | |
import platform | |
import datetime | |
import subprocess | |
import numpy as np | |
from threading import Thread | |
from moviepy.editor import VideoFileClip, ImageSequenceClip | |
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip | |
logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED) | |
quality_types = ["poor", "low", "medium", "high", "best"] | |
bitrate_quality_by_resolution = { | |
240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"}, | |
360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"}, | |
480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"}, | |
720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"}, | |
1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"}, | |
1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"}, | |
2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"} | |
} | |
crf_quality_by_resolution = { | |
240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20}, | |
360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18}, | |
480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16}, | |
720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14}, | |
1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12}, | |
1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10}, | |
2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8} | |
} | |
def get_bitrate_for_resolution(resolution, quality): | |
available_resolutions = list(bitrate_quality_by_resolution.keys()) | |
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution)) | |
return bitrate_quality_by_resolution[closest_resolution][quality] | |
def get_crf_for_resolution(resolution, quality): | |
available_resolutions = list(crf_quality_by_resolution.keys()) | |
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution)) | |
return crf_quality_by_resolution[closest_resolution][quality] | |
def get_video_bitrate(video_file): | |
ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', | |
'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file] | |
result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE) | |
kbps = max(int(result.stdout) // 1000, 10) | |
return str(kbps) + 'k' | |
def trim_video(video_path, output_path, start_frame, stop_frame): | |
video_name, _ = os.path.splitext(os.path.basename(video_path)) | |
trimmed_video_filename = video_name + "_trimmed" + ".mp4" | |
temp_path = os.path.join(output_path, "trim") | |
os.makedirs(temp_path, exist_ok=True) | |
trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename) | |
video = VideoFileClip(video_path, fps_source="fps") | |
fps = video.fps | |
start_time = start_frame / fps | |
duration = (stop_frame - start_frame) / fps | |
bitrate = get_bitrate_for_resolution(min(*video.size), "high") | |
trimmed_video = video.subclip(start_time, start_time + duration) | |
trimmed_video.write_videofile( | |
trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate, | |
) | |
trimmed_video.close() | |
video.close() | |
return trimmed_video_file_path | |
def open_directory(path=None): | |
if path is None: | |
return | |
try: | |
os.startfile(path) | |
except: | |
subprocess.Popen(["xdg-open", path]) | |
class StreamerThread(object): | |
def __init__(self, src=0): | |
self.capture = cv2.VideoCapture(src) | |
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2) | |
self.FPS = 1 / 30 | |
self.FPS_MS = int(self.FPS * 1000) | |
self.thread = None | |
self.stopped = False | |
self.frame = None | |
def start(self): | |
self.thread = Thread(target=self.update, args=()) | |
self.thread.daemon = True | |
self.thread.start() | |
def stop(self): | |
self.stopped = True | |
self.thread.join() | |
print("stopped") | |
def update(self): | |
while not self.stopped: | |
if self.capture.isOpened(): | |
(self.status, self.frame) = self.capture.read() | |
time.sleep(self.FPS) | |
class ProcessBar: | |
def __init__(self, bar_length, total, before="⬛", after="🟨"): | |
self.bar_length = bar_length | |
self.total = total | |
self.before = before | |
self.after = after | |
self.bar = [self.before] * bar_length | |
self.start_time = time.time() | |
def get(self, index): | |
total = self.total | |
elapsed_time = time.time() - self.start_time | |
average_time_per_iteration = elapsed_time / (index + 1) | |
remaining_iterations = total - (index + 1) | |
estimated_remaining_time = remaining_iterations * average_time_per_iteration | |
self.bar[int(index / total * self.bar_length)] = self.after | |
info_text = f"({index+1}/{total}) {''.join(self.bar)} " | |
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)" | |
return info_text | |
def add_logo_to_image(img, logo=logo_image): | |
logo_size = int(img.shape[1] * 0.1) | |
logo = cv2.resize(logo, (logo_size, logo_size)) | |
if logo.shape[2] == 4: | |
alpha = logo[:, :, 3] | |
else: | |
alpha = np.ones_like(logo[:, :, 0]) * 255 | |
padding = int(logo_size * 0.1) | |
roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding | |
for c in range(0, 3): | |
img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = ( | |
alpha / 255.0 | |
) * logo[:, :, c] + (1 - alpha / 255.0) * img[ | |
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c | |
] | |
return img | |
def split_list_by_lengths(data, length_list): | |
split_data = [] | |
start_idx = 0 | |
for length in length_list: | |
end_idx = start_idx + length | |
sublist = data[start_idx:end_idx] | |
split_data.append(sublist) | |
start_idx = end_idx | |
return split_data | |
def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name): | |
video_clip = VideoFileClip(ref_video_path, fps_source="fps") | |
fps = video_clip.fps | |
duration = video_clip.duration | |
total_frames = video_clip.reader.nframes | |
audio_clip = video_clip.audio if video_clip.audio is not None else None | |
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps) | |
if audio_clip is not None: | |
edited_video_clip = edited_video_clip.set_audio(audio_clip) | |
bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high") | |
edited_video_clip.set_duration(duration).write_videofile( | |
output_file_name, codec="libx264", bitrate=bitrate, | |
) | |
edited_video_clip.close() | |
video_clip.close() | |
def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height): | |
# Extract the coordinates of the bbox | |
x1, y1, x2, y2 = bbox | |
# Calculate the center point of the bbox | |
center_x = (x1 + x2) / 2 | |
center_y = (y1 + y2) / 2 | |
# Calculate the new width and height of the bbox based on the scaling factors | |
width = x2 - x1 | |
height = y2 - y1 | |
new_width = width * scale_width | |
new_height = height * scale_height | |
# Calculate the new coordinates of the bbox, considering the image boundaries | |
new_x1 = center_x - new_width / 2 | |
new_y1 = center_y - new_height / 2 | |
new_x2 = center_x + new_width / 2 | |
new_y2 = center_y + new_height / 2 | |
# Adjust the coordinates to ensure the bbox remains within the image boundaries | |
new_x1 = max(0, new_x1) | |
new_y1 = max(0, new_y1) | |
new_x2 = min(image_width - 1, new_x2) | |
new_y2 = min(image_height - 1, new_y2) | |
# Return the scaled bbox coordinates | |
scaled_bbox = [new_x1, new_y1, new_x2, new_y2] | |
return scaled_bbox | |
def laplacian_blending(A, B, m, num_levels=7): | |
assert A.shape == B.shape | |
assert B.shape == m.shape | |
height = m.shape[0] | |
width = m.shape[1] | |
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]) | |
size = size_list[np.where(size_list > max(height, width))][0] | |
GA = np.zeros((size, size, 3), dtype=np.float32) | |
GA[:height, :width, :] = A | |
GB = np.zeros((size, size, 3), dtype=np.float32) | |
GB[:height, :width, :] = B | |
GM = np.zeros((size, size, 3), dtype=np.float32) | |
GM[:height, :width, :] = m | |
gpA = [GA] | |
gpB = [GB] | |
gpM = [GM] | |
for i in range(num_levels): | |
GA = cv2.pyrDown(GA) | |
GB = cv2.pyrDown(GB) | |
GM = cv2.pyrDown(GM) | |
gpA.append(np.float32(GA)) | |
gpB.append(np.float32(GB)) | |
gpM.append(np.float32(GM)) | |
lpA = [gpA[num_levels-1]] | |
lpB = [gpB[num_levels-1]] | |
gpMr = [gpM[num_levels-1]] | |
for i in range(num_levels-1,0,-1): | |
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i])) | |
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i])) | |
lpA.append(LA) | |
lpB.append(LB) | |
gpMr.append(gpM[i-1]) | |
LS = [] | |
for la,lb,gm in zip(lpA,lpB,gpMr): | |
ls = la * gm + lb * (1.0 - gm) | |
LS.append(ls) | |
ls_ = LS[0] | |
for i in range(1,num_levels): | |
ls_ = cv2.pyrUp(ls_) | |
ls_ = cv2.add(ls_, LS[i]) | |
ls_ = ls_[:height, :width, :] | |
#ls_ = (ls_ - np.min(ls_)) * (255.0 / (np.max(ls_) - np.min(ls_))) | |
return ls_.clip(0, 255) | |
def mask_crop(mask, crop): | |
top, bottom, left, right = crop | |
shape = mask.shape | |
top = int(top) | |
bottom = int(bottom) | |
if top + bottom < shape[1]: | |
if top > 0: mask[:top, :] = 0 | |
if bottom > 0: mask[-bottom:, :] = 0 | |
left = int(left) | |
right = int(right) | |
if left + right < shape[0]: | |
if left > 0: mask[:, :left] = 0 | |
if right > 0: mask[:, -right:] = 0 | |
return mask | |
def create_image_grid(images, size=128): | |
num_images = len(images) | |
num_cols = int(np.ceil(np.sqrt(num_images))) | |
num_rows = int(np.ceil(num_images / num_cols)) | |
grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8) | |
for i, image in enumerate(images): | |
row_idx = (i // num_cols) * size | |
col_idx = (i % num_cols) * size | |
image = cv2.resize(image.copy(), (size,size)) | |
if image.dtype != np.uint8: | |
image = (image.astype('float32') * 255).astype('uint8') | |
if image.ndim == 2: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |
grid[row_idx:row_idx + size, col_idx:col_idx + size] = image | |
return grid | |