Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import glob | |
import time | |
import torch | |
import shutil | |
import gfpgan | |
import argparse | |
import platform | |
import datetime | |
import subprocess | |
import insightface | |
import onnxruntime | |
import numpy as np | |
import gradio as gr | |
from moviepy.editor import VideoFileClip, ImageSequenceClip | |
from face_analyser import detect_conditions, analyse_face | |
from utils import trim_video, StreamerThread, ProcessBar, open_directory | |
from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list | |
from swapper import ( | |
swap_face, | |
swap_face_with_condition, | |
swap_specific, | |
swap_options_list, | |
) | |
## ------------------------------ USER ARGS ------------------------------ | |
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper") | |
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd()) | |
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False) | |
parser.add_argument( | |
"--colab", action="store_true", help="Enable colab mode", default=False | |
) | |
user_args = parser.parse_args() | |
## ------------------------------ DEFAULTS ------------------------------ | |
USE_COLAB = user_args.colab | |
USE_CUDA = user_args.cuda | |
DEF_OUTPUT_PATH = user_args.out_dir | |
WORKSPACE = None | |
OUTPUT_FILE = None | |
CURRENT_FRAME = None | |
STREAMER = None | |
DETECT_CONDITION = "left most" | |
DETECT_SIZE = 640 | |
DETECT_THRESH = 0.6 | |
NUM_OF_SRC_SPECIFIC = 10 | |
MASK_INCLUDE = [ | |
"Skin", | |
"R-Eyebrow", | |
"L-Eyebrow", | |
"L-Eye", | |
"R-Eye", | |
"Nose", | |
"Mouth", | |
"L-Lip", | |
"U-Lip" | |
] | |
MASK_EXCLUDE = ["R-Ear", "L-Ear", "Hair", "Hat"] | |
MASK_BLUR = 25 | |
FACE_SWAPPER = None | |
FACE_ANALYSER = None | |
FACE_ENHANCER = None | |
FACE_PARSER = None | |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------ | |
# Note: For AMD,MAC or non CUDA users, change settings here | |
PROVIDER = ["CPUExecutionProvider"] | |
if USE_CUDA: | |
available_providers = onnxruntime.get_available_providers() | |
if "CUDAExecutionProvider" in available_providers: | |
print("\n********** Running on CUDA **********\n") | |
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"] | |
else: | |
USE_CUDA = False | |
print("\n********** CUDA unavailable running on CPU **********\n") | |
else: | |
USE_CUDA = False | |
print("\n********** Running on CPU **********\n") | |
## ------------------------------ LOAD MODELS ------------------------------ | |
def load_face_analyser_model(name="buffalo_l"): | |
global FACE_ANALYSER | |
if FACE_ANALYSER is None: | |
FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER) | |
FACE_ANALYSER.prepare( | |
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH | |
) | |
def load_face_swapper_model(name="./assets/pretrained_models/inswapper_128.onnx"): | |
global FACE_SWAPPER | |
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), name) | |
if FACE_SWAPPER is None: | |
FACE_SWAPPER = insightface.model_zoo.get_model(path, providers=PROVIDER) | |
def load_face_enhancer_model(name="./assets/pretrained_models/GFPGANv1.4.pth"): | |
global FACE_ENHANCER | |
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), name) | |
if FACE_ENHANCER is None: | |
FACE_ENHANCER = gfpgan.GFPGANer(model_path=path, upscale=1) | |
def load_face_parser_model(name="./assets/pretrained_models/79999_iter.pth"): | |
global FACE_PARSER | |
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), name) | |
if FACE_PARSER is None: | |
FACE_PARSER = init_parser(name, use_cuda=USE_CUDA) | |
load_face_analyser_model() | |
load_face_swapper_model() | |
## ------------------------------ MAIN PROCESS ------------------------------ | |
def process( | |
input_type, | |
image_path, | |
video_path, | |
directory_path, | |
source_path, | |
output_path, | |
output_name, | |
keep_output_sequence, | |
condition, | |
age, | |
distance, | |
face_enhance, | |
enable_face_parser, | |
mask_include, | |
mask_exclude, | |
mask_blur, | |
*specifics, | |
): | |
global WORKSPACE | |
global OUTPUT_FILE | |
global PREVIEW | |
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None | |
## ------------------------------ GUI UPDATE FUNC ------------------------------ | |
def ui_before(): | |
return ( | |
gr.update(visible=True, value=PREVIEW), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(visible=False), | |
) | |
def ui_after(): | |
return ( | |
gr.update(visible=True, value=PREVIEW), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(visible=False), | |
) | |
def ui_after_vid(): | |
return ( | |
gr.update(visible=False), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(value=OUTPUT_FILE, visible=True), | |
) | |
## ------------------------------ LOAD PENDING MODELS ------------------------------ | |
start_time = time.time() | |
specifics = list(specifics) | |
half = len(specifics) // 2 | |
sources = specifics[:half] | |
specifics = specifics[half:] | |
yield "### \n β Loading face analyser model...", *ui_before() | |
load_face_analyser_model() | |
yield "### \n β Loading face swapper model...", *ui_before() | |
load_face_swapper_model() | |
if face_enhance: | |
yield "### \n β Loading face enhancer model...", *ui_before() | |
load_face_enhancer_model() | |
if enable_face_parser: | |
yield "### \n β Loading face parsing model...", *ui_before() | |
load_face_parser_model() | |
yield "### \n β Analysing Face...", *ui_before() | |
mi = mask_regions_to_list(mask_include) | |
me = mask_regions_to_list(mask_exclude) | |
models = { | |
"swap": FACE_SWAPPER, | |
"enhance": FACE_ENHANCER, | |
"enhance_sett": face_enhance, | |
"face_parser": FACE_PARSER, | |
"face_parser_sett": (enable_face_parser, mi, me, int(mask_blur)), | |
} | |
## ------------------------------ ANALYSE SOURCE & SPECIFIC ------------------------------ | |
analysed_source_specific = [] | |
if condition == "Specific Face": | |
for source, specific in zip(sources, specifics): | |
if source is None or specific is None: | |
continue | |
analysed_source = analyse_face( | |
source, | |
FACE_ANALYSER, | |
return_single_face=True, | |
detect_condition=DETECT_CONDITION, | |
) | |
analysed_specific = analyse_face( | |
specific, | |
FACE_ANALYSER, | |
return_single_face=True, | |
detect_condition=DETECT_CONDITION, | |
) | |
analysed_source_specific.append([analysed_source, analysed_specific]) | |
else: | |
source = cv2.imread(source_path) | |
analysed_source = analyse_face( | |
source, | |
FACE_ANALYSER, | |
return_single_face=True, | |
detect_condition=DETECT_CONDITION, | |
) | |
## ------------------------------ IMAGE ------------------------------ | |
if input_type == "Image": | |
target = cv2.imread(image_path) | |
analysed_target = analyse_face(target, FACE_ANALYSER, return_single_face=False) | |
if condition == "Specific Face": | |
swapped = swap_specific( | |
analysed_source_specific, | |
analysed_target, | |
target, | |
models, | |
threshold=distance, | |
) | |
else: | |
swapped = swap_face_with_condition( | |
target, analysed_target, analysed_source, condition, age, models | |
) | |
filename = os.path.join(output_path, output_name + ".png") | |
cv2.imwrite(filename, swapped) | |
OUTPUT_FILE = filename | |
WORKSPACE = output_path | |
PREVIEW = swapped[:, :, ::-1] | |
tot_exec_time = time.time() - start_time | |
_min, _sec = divmod(tot_exec_time, 60) | |
yield f"Completed in {int(_min)} min {int(_sec)} sec.", *ui_after() | |
## ------------------------------ VIDEO ------------------------------ | |
elif input_type == "Video": | |
temp_path = os.path.join(output_path, output_name, "sequence") | |
os.makedirs(temp_path, exist_ok=True) | |
video_clip = VideoFileClip(video_path) | |
duration = video_clip.duration | |
fps = video_clip.fps | |
total_frames = video_clip.reader.nframes | |
analysed_targets = [] | |
process_bar = ProcessBar(30, total_frames) | |
yield "### \n β Analysing...", *ui_before() | |
for i, frame in enumerate(video_clip.iter_frames()): | |
analysed_targets.append( | |
analyse_face(frame, FACE_ANALYSER, return_single_face=False) | |
) | |
info_text = "Analysing Faces || " | |
info_text += process_bar.get(i) | |
print("\033[1A\033[K", end="", flush=True) | |
print(info_text) | |
if i % 10 == 0: | |
yield "### \n" + info_text, *ui_before() | |
video_clip.close() | |
image_sequence = [] | |
video_clip = VideoFileClip(video_path) | |
audio_clip = video_clip.audio if video_clip.audio is not None else None | |
process_bar = ProcessBar(30, total_frames) | |
yield "### \n β Swapping...", *ui_before() | |
for i, frame in enumerate(video_clip.iter_frames()): | |
swapped = frame | |
analysed_target = analysed_targets[i] | |
if condition == "Specific Face": | |
swapped = swap_specific( | |
frame, | |
analysed_target, | |
analysed_source_specific, | |
models, | |
threshold=distance, | |
) | |
else: | |
swapped = swap_face_with_condition( | |
frame, analysed_target, analysed_source, condition, age, models | |
) | |
image_path = os.path.join(temp_path, f"frame_{i}.png") | |
cv2.imwrite(image_path, swapped[:, :, ::-1]) | |
image_sequence.append(image_path) | |
info_text = "Swapping Faces || " | |
info_text += process_bar.get(i) | |
print("\033[1A\033[K", end="", flush=True) | |
print(info_text) | |
if i % 6 == 0: | |
PREVIEW = swapped | |
yield "### \n" + info_text, *ui_before() | |
yield "### \n β Merging...", *ui_before() | |
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps) | |
if audio_clip is not None: | |
edited_video_clip = edited_video_clip.set_audio(audio_clip) | |
output_video_path = os.path.join(output_path, output_name + ".mp4") | |
edited_video_clip.set_duration(duration).write_videofile( | |
output_video_path, codec="libx264" | |
) | |
edited_video_clip.close() | |
video_clip.close() | |
if os.path.exists(temp_path) and not keep_output_sequence: | |
yield "### \n β Removing temporary files...", *ui_before() | |
shutil.rmtree(temp_path) | |
WORKSPACE = output_path | |
OUTPUT_FILE = output_video_path | |
tot_exec_time = time.time() - start_time | |
_min, _sec = divmod(tot_exec_time, 60) | |
yield f"βοΈ Completed in {int(_min)} min {int(_sec)} sec.", *ui_after_vid() | |
## ------------------------------ DIRECTORY ------------------------------ | |
elif input_type == "Directory": | |
source = cv2.imread(source_path) | |
source = analyse_face( | |
source, | |
FACE_ANALYSER, | |
return_single_face=True, | |
detect_condition=DETECT_CONDITION, | |
) | |
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"] | |
temp_path = os.path.join(output_path, output_name) | |
if os.path.exists(temp_path): | |
shutil.rmtree(temp_path) | |
os.mkdir(temp_path) | |
swapped = None | |
files = [] | |
for file_path in glob.glob(os.path.join(directory_path, "*")): | |
if any(file_path.lower().endswith(ext) for ext in extensions): | |
files.append(file_path) | |
files_length = len(files) | |
filename = None | |
for i, file_path in enumerate(files): | |
target = cv2.imread(file_path) | |
analysed_target = analyse_face( | |
target, FACE_ANALYSER, return_single_face=False | |
) | |
if condition == "Specific Face": | |
swapped = swap_specific( | |
target, | |
analysed_target, | |
analysed_source_specific, | |
models, | |
threshold=distance, | |
) | |
else: | |
swapped = swap_face_with_condition( | |
target, analysed_target, analysed_source, condition, age, models | |
) | |
filename = os.path.join(temp_path, os.path.basename(file_path)) | |
cv2.imwrite(filename, swapped) | |
info_text = f"### \n β Processing file {i+1} of {files_length}" | |
PREVIEW = swapped[:, :, ::-1] | |
yield info_text, *ui_before() | |
WORKSPACE = temp_path | |
OUTPUT_FILE = filename | |
tot_exec_time = time.time() - start_time | |
_min, _sec = divmod(tot_exec_time, 60) | |
yield f"βοΈ Completed in {int(_min)} min {int(_sec)} sec.", *ui_after() | |
## ------------------------------ STREAM ------------------------------ | |
elif input_type == "Stream": | |
yield "### \n β Starting...", *ui_before() | |
global STREAMER | |
STREAMER = StreamerThread(src=directory_path) | |
STREAMER.start() | |
while True: | |
try: | |
target = STREAMER.frame | |
analysed_target = analyse_face( | |
target, FACE_ANALYSER, return_single_face=False | |
) | |
if condition == "Specific Face": | |
swapped = swap_specific( | |
target, | |
analysed_target, | |
analysed_source_specific, | |
models, | |
threshold=distance, | |
) | |
else: | |
swapped = swap_face_with_condition( | |
target, analysed_target, analysed_source, condition, age, models | |
) | |
PREVIEW = swapped[:, :, ::-1] | |
yield f"Streaming...", *ui_before() | |
except AttributeError: | |
yield "Streaming...", *ui_before() | |
STREAMER.stop() | |
## ------------------------------ GRADIO FUNC ------------------------------ | |
def update_radio(value): | |
if value == "Image": | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
elif value == "Video": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
) | |
elif value == "Directory": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
elif value == "Stream": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
def swap_option_changed(value): | |
if value == swap_options_list[1] or value == swap_options_list[2]: | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
elif value == swap_options_list[5]: | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
) | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
def video_changed(video_path): | |
sliders_update = gr.Slider.update | |
button_update = gr.Button.update | |
number_update = gr.Number.update | |
if video_path is None: | |
return ( | |
sliders_update(minimum=0, maximum=0, value=0), | |
sliders_update(minimum=1, maximum=1, value=1), | |
number_update(value=1), | |
) | |
try: | |
clip = VideoFileClip(video_path) | |
fps = clip.fps | |
total_frames = clip.reader.nframes | |
clip.close() | |
return ( | |
sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True), | |
sliders_update( | |
minimum=0, maximum=total_frames, value=total_frames, interactive=True | |
), | |
number_update(value=fps), | |
) | |
except: | |
return ( | |
sliders_update(value=0), | |
sliders_update(value=0), | |
number_update(value=1), | |
) | |
def analyse_settings_changed(detect_condition, detection_size, detection_threshold): | |
yield "### \n β Applying new values..." | |
global FACE_ANALYSER | |
global DETECT_CONDITION | |
DETECT_CONDITION = detect_condition | |
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER) | |
FACE_ANALYSER.prepare( | |
ctx_id=0, | |
det_size=(int(detection_size), int(detection_size)), | |
det_thresh=float(detection_threshold), | |
) | |
yield f"### \n βοΈ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}" | |
def stop_running(): | |
global STREAMER | |
if hasattr(STREAMER, "stop"): | |
STREAMER.stop() | |
STREAMER = None | |
return "Cancelled" | |
def slider_changed(show_frame, video_path, frame_index): | |
if not show_frame: | |
return None, None | |
if video_path is None: | |
return None, None | |
clip = VideoFileClip(video_path) | |
frame = clip.get_frame(frame_index / clip.fps) | |
frame_array = np.array(frame) | |
clip.close() | |
return gr.Image.update(value=frame_array, visible=True), gr.Video.update( | |
visible=False | |
) | |
def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame): | |
yield video_path, f"### \n β Trimming video frame {start_frame} to {stop_frame}..." | |
try: | |
output_path = os.path.join(output_path, output_name) | |
trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame) | |
yield trimmed_video, "### \n βοΈ Video trimmed and reloaded." | |
except Exception as e: | |
print(e) | |
yield video_path, "### \n β Video trimming failed. See console for more info." | |
## ------------------------------ GRADIO GUI ------------------------------ | |
css = """ | |
footer{display:none !important} | |
""" | |
with gr.Blocks(css=css) as interface: | |
gr.Markdown("# πΏ Swap Mukham") | |
gr.Markdown("### Face swap app based on insightface inswapper.") | |
with gr.Row(): | |
with gr.Row(): | |
with gr.Column(scale=0.4): | |
with gr.Tab("π Swap Condition"): | |
swap_option = gr.Radio( | |
swap_options_list, | |
show_label=False, | |
value=swap_options_list[0], | |
interactive=True, | |
) | |
age = gr.Number( | |
value=25, label="Value", interactive=True, visible=False | |
) | |
with gr.Tab("ποΈ Detection Settings"): | |
detect_condition_dropdown = gr.Dropdown( | |
detect_conditions, | |
label="Condition", | |
value=DETECT_CONDITION, | |
interactive=True, | |
info="This condition is only used when multiple faces are detected on source or specific image.", | |
) | |
detection_size = gr.Number( | |
label="Detection Size", value=DETECT_SIZE, interactive=True | |
) | |
detection_threshold = gr.Number( | |
label="Detection Threshold", | |
value=DETECT_THRESH, | |
interactive=True, | |
) | |
apply_detection_settings = gr.Button("Apply settings") | |
with gr.Tab("π€ Output Settings"): | |
output_directory = gr.Text( | |
label="Output Directory", | |
value=DEF_OUTPUT_PATH, | |
interactive=True, | |
) | |
output_name = gr.Text( | |
label="Output Name", value="Result", interactive=True | |
) | |
keep_output_sequence = gr.Checkbox( | |
label="Keep output sequence", value=False, interactive=True | |
) | |
with gr.Tab("πͺ Other Settings"): | |
with gr.Accordion("Enhance Face", open=True): | |
enable_face_enhance = gr.Checkbox( | |
label="Enable GFPGAN", value=False, interactive=True | |
) | |
with gr.Accordion("Advanced Mask", open=False): | |
enable_face_parser_mask = gr.Checkbox( | |
label="Enable Face Parsing", | |
value=False, | |
interactive=True, | |
) | |
mask_include = gr.Dropdown( | |
mask_regions.keys(), | |
value=MASK_INCLUDE, | |
multiselect=True, | |
label="Include", | |
interactive=True, | |
) | |
mask_exclude = gr.Dropdown( | |
mask_regions.keys(), | |
value=MASK_EXCLUDE, | |
multiselect=True, | |
label="Exclude", | |
interactive=True, | |
) | |
mask_blur = gr.Number( | |
label="Blur Mask", | |
value=MASK_BLUR, | |
minimum=0, | |
interactive=True, | |
) | |
source_image_input = gr.Image( | |
label="Source face", type="filepath", interactive=True | |
) | |
with gr.Box(visible=False) as specific_face: | |
for i in range(NUM_OF_SRC_SPECIFIC): | |
idx = i + 1 | |
code = "\n" | |
code += f"with gr.Tab(label='({idx})'):" | |
code += "\n\twith gr.Row():" | |
code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')" | |
code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')" | |
exec(code) | |
distance_slider = gr.Slider( | |
minimum=0, | |
maximum=2, | |
value=0.6, | |
interactive=True, | |
label="Distance", | |
info="Lower distance is more similar and higher distance is less similar to the target face.", | |
) | |
with gr.Group(): | |
input_type = gr.Radio( | |
["Image", "Video", "Directory", "Stream"], | |
label="Target Type", | |
value="Video", | |
) | |
with gr.Box(visible=False) as input_image_group: | |
image_input = gr.Image( | |
label="Target Image", interactive=True, type="filepath" | |
) | |
with gr.Box(visible=True) as input_video_group: | |
vid_widget = gr.Video if USE_COLAB else gr.Text | |
video_input = vid_widget( | |
label="Target Video Path", interactive=True | |
) | |
with gr.Accordion("βοΈ Trim video", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
set_slider_range_btn = gr.Button( | |
"Set frame range", interactive=True | |
) | |
show_trim_preview_btn = gr.Checkbox( | |
label="Show frame when slider change", | |
value=True, | |
interactive=True, | |
) | |
video_fps = gr.Number( | |
value=30, | |
interactive=False, | |
label="Fps", | |
visible=False, | |
) | |
start_frame = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0, | |
step=1, | |
interactive=True, | |
label="Start Frame", | |
info="", | |
) | |
end_frame = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=1, | |
step=1, | |
interactive=True, | |
label="End Frame", | |
info="", | |
) | |
trim_and_reload_btn = gr.Button( | |
"Trim and Reload", interactive=True | |
) | |
with gr.Box(visible=False) as input_directory_group: | |
direc_input = gr.Text(label="Path", interactive=True) | |
with gr.Column(scale=0.6): | |
info = gr.Markdown(value="...") | |
with gr.Row(): | |
swap_button = gr.Button("β¨ Swap", variant="primary") | |
cancel_button = gr.Button("β Cancel") | |
preview_image = gr.Image(label="Output", interactive=False) | |
preview_video = gr.Video( | |
label="Output", interactive=False, visible=False | |
) | |
with gr.Row(): | |
output_directory_button = gr.Button( | |
"π", interactive=False, visible=not USE_COLAB | |
) | |
output_video_button = gr.Button( | |
"π¬", interactive=False, visible=not USE_COLAB | |
) | |
with gr.Column(): | |
gr.Markdown( | |
'[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/harisreedhar)' | |
) | |
gr.Markdown( | |
"### [Source code](https://github.com/harisreedhar/Swap-Mukham) . [Disclaimer](https://github.com/harisreedhar/Swap-Mukham#disclaimer) . [Gradio](https://gradio.app/)" | |
) | |
## ------------------------------ GRADIO EVENTS ------------------------------ | |
set_slider_range_event = set_slider_range_btn.click( | |
video_changed, | |
inputs=[video_input], | |
outputs=[start_frame, end_frame, video_fps], | |
) | |
trim_and_reload_event = trim_and_reload_btn.click( | |
fn=trim_and_reload, | |
inputs=[video_input, output_directory, output_name, start_frame, end_frame], | |
outputs=[video_input, info], | |
) | |
start_frame_event = start_frame.release( | |
fn=slider_changed, | |
inputs=[show_trim_preview_btn, video_input, start_frame], | |
outputs=[preview_image, preview_video], | |
show_progress=False, | |
) | |
end_frame_event = end_frame.release( | |
fn=slider_changed, | |
inputs=[show_trim_preview_btn, video_input, end_frame], | |
outputs=[preview_image, preview_video], | |
show_progress=False, | |
) | |
input_type.change( | |
update_radio, | |
inputs=[input_type], | |
outputs=[input_image_group, input_video_group, input_directory_group], | |
) | |
swap_option.change( | |
swap_option_changed, | |
inputs=[swap_option], | |
outputs=[age, specific_face, source_image_input], | |
) | |
apply_detection_settings.click( | |
analyse_settings_changed, | |
inputs=[detect_condition_dropdown, detection_size, detection_threshold], | |
outputs=[info], | |
) | |
src_specific_inputs = [] | |
gen_variable_txt = ",".join( | |
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] | |
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] | |
) | |
exec(f"src_specific_inputs = ({gen_variable_txt})") | |
swap_inputs = [ | |
input_type, | |
image_input, | |
video_input, | |
direc_input, | |
source_image_input, | |
output_directory, | |
output_name, | |
keep_output_sequence, | |
swap_option, | |
age, | |
distance_slider, | |
enable_face_enhance, | |
enable_face_parser_mask, | |
mask_include, | |
mask_exclude, | |
mask_blur, | |
*src_specific_inputs, | |
] | |
swap_outputs = [ | |
info, | |
preview_image, | |
output_directory_button, | |
output_video_button, | |
preview_video, | |
] | |
swap_event = swap_button.click( | |
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=False | |
) | |
cancel_button.click( | |
fn=stop_running, | |
inputs=None, | |
outputs=[info], | |
cancels=[ | |
swap_event, | |
trim_and_reload_event, | |
set_slider_range_event, | |
start_frame_event, | |
end_frame_event, | |
], | |
show_progress=False, | |
) | |
output_directory_button.click( | |
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None | |
) | |
output_video_button.click( | |
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None | |
) | |
if __name__ == "__main__": | |
if USE_COLAB: | |
print("Running in colab mode") | |
interface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB) | |