Spaces:
Runtime error
Runtime error
import streamlit as st | |
from annotated_text import annotated_text | |
import transformers | |
ENTITY_TO_COLOR = { | |
'PER': '#8ef', | |
'LOC': '#faa', | |
'ORG': '#afa', | |
'MISC': '#fea', | |
} | |
def get_pipe(): | |
model_name = "dslim/bert-base-NER" | |
model = transformers.AutoModelForTokenClassification.from_pretrained(model_name) | |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
pipe = transformers.pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple") | |
return pipe | |
def parse_text(text, prediction): | |
start = 0 | |
parsed_text = [] | |
for p in prediction: | |
parsed_text.append(text[start:p["start"]]) | |
parsed_text.append((p["word"], p["entity_group"], ENTITY_TO_COLOR[p["entity_group"]])) | |
start = p["end"] | |
parsed_text.append(text[start:]) | |
return parsed_text | |
st.set_page_config(page_title="Named Entity Recognition") | |
st.title("Named Entity Recognition") | |
st.write("Type text into the text box and then press 'Predict' to get the named entities.") | |
default_text = "My name is John Smith. I work at Microsoft. I live in Paris. My favorite painting is the Mona Lisa." | |
text = st.text_area('Enter text here:', value=default_text) | |
submit = st.button('Predict') | |
with st.spinner("Loading model..."): | |
pipe = get_pipe() | |
if (submit and len(text.strip()) > 0) or len(text.strip()) > 0: | |
prediction = pipe(text) | |
parsed_text = parse_text(text, prediction) | |
st.header("Prediction:") | |
annotated_text(*parsed_text) | |
st.header('Raw values:') | |
st.json(prediction) | |