Spaces:
Build error
Build error
bensonsantos
commited on
Commit
•
c494b78
1
Parent(s):
e699e28
Update app.py
Browse files
app.py
CHANGED
@@ -10,11 +10,18 @@ checkpoint = torch.load('part_B_pre.pth.tar',map_location=torch.device('cpu'))
|
|
10 |
model.load_state_dict(checkpoint['state_dict'])
|
11 |
model.eval()
|
12 |
|
|
|
13 |
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
|
14 |
|
|
|
15 |
def crowd(img):
|
|
|
16 |
img = transform(img)
|
|
|
|
|
17 |
img = rearrange(img, "c h w -> 1 c h w")
|
|
|
|
|
18 |
h = img.shape[2]
|
19 |
w = img.shape[3]
|
20 |
h_d = int(h/2)
|
@@ -23,11 +30,15 @@ def crowd(img):
|
|
23 |
img_2 = img[:,:,:h_d,w_d:]
|
24 |
img_3 = img[:,:,h_d:,:w_d]
|
25 |
img_4 = img[:,:,h_d:,w_d:]
|
|
|
|
|
26 |
with torch.no_grad():
|
27 |
density_1 = model(img_1).numpy().sum()
|
28 |
density_2 = model(img_2).numpy().sum()
|
29 |
density_3 = model(img_3).numpy().sum()
|
30 |
density_4 = model(img_4).numpy().sum()
|
|
|
|
|
31 |
pred = density_1 + density_2 + density_3 + density_4
|
32 |
pred = int(pred.round())
|
33 |
return pred
|
|
|
10 |
model.load_state_dict(checkpoint['state_dict'])
|
11 |
model.eval()
|
12 |
|
13 |
+
## Defining the transform function
|
14 |
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
|
15 |
|
16 |
+
|
17 |
def crowd(img):
|
18 |
+
## Transforming the image
|
19 |
img = transform(img)
|
20 |
+
|
21 |
+
## Adding batch dimension
|
22 |
img = rearrange(img, "c h w -> 1 c h w")
|
23 |
+
|
24 |
+
## Slicing the image into four parts
|
25 |
h = img.shape[2]
|
26 |
w = img.shape[3]
|
27 |
h_d = int(h/2)
|
|
|
30 |
img_2 = img[:,:,:h_d,w_d:]
|
31 |
img_3 = img[:,:,h_d:,:w_d]
|
32 |
img_4 = img[:,:,h_d:,w_d:]
|
33 |
+
|
34 |
+
## Inputting the 4 images into the model, converting it to numpy array, and summing to get the density
|
35 |
with torch.no_grad():
|
36 |
density_1 = model(img_1).numpy().sum()
|
37 |
density_2 = model(img_2).numpy().sum()
|
38 |
density_3 = model(img_3).numpy().sum()
|
39 |
density_4 = model(img_4).numpy().sum()
|
40 |
+
|
41 |
+
## Summing up the estimated density and rounding the result to get an integer
|
42 |
pred = density_1 + density_2 + density_3 + density_4
|
43 |
pred = int(pred.round())
|
44 |
return pred
|