Spaces:
Runtime error
Runtime error
benskibenski
commited on
Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- .gitignore +93 -0
- Comic_Generation.ipynb +3 -0
- LICENSE +201 -0
- README.md +158 -12
- app.py +750 -0
- cog.yaml +23 -0
- config/models.yaml +19 -0
- examples/Robert/images.jpeg +0 -0
- examples/lecun/yann-lecun2.png +0 -0
- examples/taylor/1-1.png +0 -0
- fonts/Inkfree.ttf +0 -0
- gradio_app_sdxl_specific_id_low_vram.py +807 -0
- gradio_app_sdxl_specific_id_mps.py +767 -0
- gradio_app_sdxl_specific_id_old_version.py +782 -0
- images/logo.png +0 -0
- images/pad_images.png +0 -0
- predict.py +781 -0
- requirements.txt +15 -0
- results_examples/image1.png +3 -0
- update.md +22 -0
- utils/__init__.py +7 -0
- utils/gradio_utils.py +428 -0
- utils/load_models_utils.py +57 -0
- utils/model.py +113 -0
- utils/pipeline.py +588 -0
- utils/style_template.py +39 -0
- utils/utils.py +426 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Comic_Generation.ipynb filter=lfs diff=lfs merge=lfs -text
|
37 |
+
results_examples/image1.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compile / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Jupyter Notebook
|
55 |
+
.ipynb_checkpoints
|
56 |
+
|
57 |
+
# pyenv
|
58 |
+
.python-version
|
59 |
+
|
60 |
+
# celery beat schedule file
|
61 |
+
celerybeat-schedule
|
62 |
+
|
63 |
+
# SageMath parsed files
|
64 |
+
*.sage.py
|
65 |
+
|
66 |
+
# Environments
|
67 |
+
.env
|
68 |
+
.venv
|
69 |
+
env/
|
70 |
+
venv/
|
71 |
+
ENV/
|
72 |
+
env.bak/
|
73 |
+
venv.bak/
|
74 |
+
|
75 |
+
# Spyder project settings
|
76 |
+
.spyderproject
|
77 |
+
.spyproject
|
78 |
+
|
79 |
+
# Rope project settings
|
80 |
+
.ropeproject
|
81 |
+
|
82 |
+
# mkdocs documentation
|
83 |
+
/site
|
84 |
+
|
85 |
+
# mypy
|
86 |
+
.mypy_cache/
|
87 |
+
.aider*
|
88 |
+
|
89 |
+
# ignore ALL .log files
|
90 |
+
*.log
|
91 |
+
# ignore ALL files in ANY directory named temp
|
92 |
+
.ipynb_checkpoints/
|
93 |
+
images/.ipynb_checkpoints/
|
Comic_Generation.ipynb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6376c7f98b4d0419d9310a3debfaa76b403c6f5a994f8f0de687a65adc6564c
|
3 |
+
size 19371692
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,12 +1,158 @@
|
|
1 |
-
---
|
2 |
-
title: JingleSharkStories
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: JingleSharkStories
|
3 |
+
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 4.31.0
|
6 |
+
---
|
7 |
+
<p align="center">
|
8 |
+
<img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/f79da6b7-0b3b-4dd7-8dd0-ba0b15306fe6" height=100>
|
9 |
+
</p>
|
10 |
+
|
11 |
+
<div align="center">
|
12 |
+
|
13 |
+
## StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md-dark.svg)]()
|
14 |
+
[[Paper](https://arxiv.org/abs/2405.01434)]   [[Project Page](https://storydiffusion.github.io/)]   [[🤗 Comic Generation Demo ](https://huggingface.co/spaces/YupengZhou/StoryDiffusion)] [![Replicate](https://replicate.com/cjwbw/StoryDiffusion/badge)](https://replicate.com/cjwbw/StoryDiffusion) <br>
|
15 |
+
|
16 |
+
|
17 |
+
</div>
|
18 |
+
|
19 |
+
<div align="left">
|
20 |
+
|
21 |
+
#### For results sharing and discussion: https://discord.gg/hSJZ35fV
|
22 |
+
#### For codebase and deployment-related discussion: https://discord.gg/2HFUHT9p
|
23 |
+
</div>
|
24 |
+
|
25 |
+
---
|
26 |
+
|
27 |
+
Official implementation of **[StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation]()**.
|
28 |
+
|
29 |
+
### **Demo Video**
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/d5b80f8f-09b0-48cd-8b10-daff46d422af
|
35 |
+
|
36 |
+
|
37 |
+
### Update History
|
38 |
+
|
39 |
+
You can visit [here](update.md) to visit update history.
|
40 |
+
|
41 |
+
### 🌠 **Key Features:**
|
42 |
+
StoryDiffusion can create a magic story by generating consistent images and videos. Our work mainly has two parts:
|
43 |
+
1. Consistent self-attention for character-consistent image generation over long-range sequences. It is hot-pluggable and compatible with all SD1.5 and SDXL-based image diffusion models. For the current implementation, the user needs to provide at least 3 text prompts for the consistent self-attention module. We recommend at least 5 - 6 text prompts for better layout arrangement.
|
44 |
+
2. Motion predictor for long-range video generation, which predicts motion between Condition Images in a compressed image semantic space, achieving larger motion prediction.
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
## 🔥 **Examples**
|
49 |
+
|
50 |
+
|
51 |
+
### Comics generation
|
52 |
+
|
53 |
+
|
54 |
+
![1](https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/b3771cbc-b6ca-4e26-bdc5-d944daf9f266)
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
### Image-to-Video generation (Results are HIGHLY compressed for speed)
|
59 |
+
Leveraging the images produced through our Consistent Self-Attention mechanism, we can extend the process to create videos by seamlessly transitioning between these images. This can be considered as a two-stage long video generation approach.
|
60 |
+
|
61 |
+
Note: results are **highly compressed** for speed, you can visit [our website](https://storydiffusion.github.io/) for the high-quality version.
|
62 |
+
#### Two-stage Long Videos Generation (New Update)
|
63 |
+
Combining the two parts, we can generate very long and high-quality AIGC videos.
|
64 |
+
| Video1 | Video2 | Video3 |
|
65 |
+
| --- | --- | --- |
|
66 |
+
| <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/4e7e0f24-5f90-419b-9a1e-cdf36d361b26" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/f509343d-d691-4e2a-b615-7d96381ef7c1" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/4f0f7abb-4ae4-47a6-b692-5bdd8d9c8006" width=224> |
|
67 |
+
|
68 |
+
|
69 |
+
#### Long Video Results using Condition Images
|
70 |
+
Our Image-to-Video model can generate a video by providing a sequence of user-input condition images.
|
71 |
+
| Video1 | Video2 | Video3 |
|
72 |
+
| --- | --- | --- |
|
73 |
+
| <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/af6f5c50-c773-4ef2-a757-6d7a46393f39" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/d58e4037-d8df-4f90-8c81-ce4b6d2d868e" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/40da15ba-f5c1-48d8-84d6-8d327207d696" width=224> |
|
74 |
+
|
75 |
+
| Video4 | Video5 | Video6 |
|
76 |
+
| --- | --- | --- |
|
77 |
+
| <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/8f04c9fc-3031-49e3-9de8-83d582b80a1f" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/604107fb-8afe-4052-bda4-362c646a756e" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/b05fa6a0-12e6-4111-abf8-18b8cd84f3ff" width=224> |
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
#### Short Videos
|
83 |
+
|
84 |
+
| Video1 | Video2 | Video3 |
|
85 |
+
| --- | --- | --- |
|
86 |
+
| <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/5e7f717f-daad-46f6-b3ba-c087bd843158" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/79aa52b2-bf37-4c9c-8555-c7050aec0cdf" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/9fdfd091-10e6-434e-9ce7-6d6e6d8f4b22" width=224> |
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
| Video4 | Video5 | Video6 |
|
91 |
+
| --- | --- | --- |
|
92 |
+
| <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/0b219b60-a998-4820-9657-6abe1747cb6b" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/d387aef0-ffc8-41b0-914f-4b0392d9f8c5" width=224> | <img src="https://github.com/HVision-NKU/StoryDiffusion/assets/49511209/3c64958a-1079-4ca0-a9cf-e0486adbc57f" width=224> |
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
## 🚩 **TODO/Updates**
|
98 |
+
- [x] Comic Results of StoryDiffusion.
|
99 |
+
- [x] Video Results of StoryDiffusion.
|
100 |
+
- [x] Source code of Comic Generation
|
101 |
+
- [x] Source code of gradio demo
|
102 |
+
- [ ] Source code of Video Generation Model
|
103 |
+
- [ ] Pretrained weight of Video Generation Model
|
104 |
+
---
|
105 |
+
|
106 |
+
# 🔧 Dependencies and Installation
|
107 |
+
|
108 |
+
- Python >= 3.8 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html))
|
109 |
+
- [PyTorch >= 2.0.0](https://pytorch.org/)
|
110 |
+
```bash
|
111 |
+
conda create --name storydiffusion python=3.10
|
112 |
+
conda activate storydiffusion
|
113 |
+
pip install -U pip
|
114 |
+
|
115 |
+
# Install requirements
|
116 |
+
pip install -r requirements.txt
|
117 |
+
```
|
118 |
+
# How to use
|
119 |
+
|
120 |
+
Currently, we provide two ways for you to generate comics.
|
121 |
+
|
122 |
+
## Use the jupyter notebook
|
123 |
+
|
124 |
+
You can open the `Comic_Generation.ipynb` and run the code.
|
125 |
+
|
126 |
+
## Start a local gradio demo
|
127 |
+
Run the following command:
|
128 |
+
|
129 |
+
```python
|
130 |
+
python gradio_app_sdxl_specific_id.py
|
131 |
+
```
|
132 |
+
|
133 |
+
**(Recommend)** We provide a low GPU Memory cost version, it was tested on a machine with 24GB GPU-memory(Tesla A10) and 30GB RAM, and expected to work well with >20 G GPU-memory.
|
134 |
+
|
135 |
+
```python
|
136 |
+
python gradio_app_sdxl_specific_id_low_vram.py
|
137 |
+
```
|
138 |
+
|
139 |
+
|
140 |
+
## Contact
|
141 |
+
If you have any questions, you are very welcome to email ypzhousdu@gmail.com and zhoudaquan21@gmail.com
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
# Disclaimer
|
147 |
+
This project strives to impact the domain of AI-driven image and video generation positively. Users are granted the freedom to create images and videos using this tool, but they are expected to comply with local laws and utilize it responsibly. The developers do not assume any responsibility for potential misuse by users.
|
148 |
+
|
149 |
+
# BibTeX
|
150 |
+
If you find StoryDiffusion useful for your research and applications, please cite using this BibTeX:
|
151 |
+
|
152 |
+
```BibTeX
|
153 |
+
@article{zhou2024storydiffusion,
|
154 |
+
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
|
155 |
+
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
|
156 |
+
journal={arXiv preprint arXiv:2405.01434},
|
157 |
+
year={2024}
|
158 |
+
}
|
app.py
ADDED
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from email.policy import default
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
import random
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import pickle
|
11 |
+
from PIL import Image
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
from datetime import datetime
|
14 |
+
from utils.gradio_utils import is_torch2_available
|
15 |
+
if is_torch2_available():
|
16 |
+
from utils.gradio_utils import \
|
17 |
+
AttnProcessor2_0 as AttnProcessor
|
18 |
+
# from utils.gradio_utils import SpatialAttnProcessor2_0
|
19 |
+
else:
|
20 |
+
from utils.gradio_utils import AttnProcessor
|
21 |
+
|
22 |
+
import diffusers
|
23 |
+
from diffusers import StableDiffusionXLPipeline
|
24 |
+
from utils import PhotoMakerStableDiffusionXLPipeline
|
25 |
+
from diffusers import DDIMScheduler
|
26 |
+
import torch.nn.functional as F
|
27 |
+
from utils.gradio_utils import cal_attn_mask_xl
|
28 |
+
import copy
|
29 |
+
import os
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
from diffusers.utils import load_image
|
32 |
+
from utils.utils import get_comic
|
33 |
+
from utils.style_template import styles
|
34 |
+
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder"
|
35 |
+
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin"
|
36 |
+
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
|
37 |
+
STYLE_NAMES = list(styles.keys())
|
38 |
+
DEFAULT_STYLE_NAME = "Japanese Anime"
|
39 |
+
global models_dict
|
40 |
+
use_va = True
|
41 |
+
models_dict = {
|
42 |
+
# "Juggernaut": "RunDiffusion/Juggernaut-XL-v8",
|
43 |
+
# "RealVision": "SG161222/RealVisXL_V4.0" ,
|
44 |
+
# "SDXL":"stabilityai/stable-diffusion-xl-base-1.0" ,
|
45 |
+
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
|
46 |
+
}
|
47 |
+
photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
|
48 |
+
MAX_SEED = np.iinfo(np.int32).max
|
49 |
+
def setup_seed(seed):
|
50 |
+
torch.manual_seed(seed)
|
51 |
+
torch.cuda.manual_seed_all(seed)
|
52 |
+
np.random.seed(seed)
|
53 |
+
random.seed(seed)
|
54 |
+
torch.backends.cudnn.deterministic = True
|
55 |
+
def set_text_unfinished():
|
56 |
+
return gr.update(visible=True, value="<h3>(Not Finished) Generating ··· The intermediate results will be shown.</h3>")
|
57 |
+
def set_text_finished():
|
58 |
+
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
|
59 |
+
#################################################
|
60 |
+
def get_image_path_list(folder_name):
|
61 |
+
image_basename_list = os.listdir(folder_name)
|
62 |
+
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
|
63 |
+
return image_path_list
|
64 |
+
|
65 |
+
#################################################
|
66 |
+
class SpatialAttnProcessor2_0(torch.nn.Module):
|
67 |
+
r"""
|
68 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
69 |
+
Args:
|
70 |
+
hidden_size (`int`):
|
71 |
+
The hidden size of the attention layer.
|
72 |
+
cross_attention_dim (`int`):
|
73 |
+
The number of channels in the `encoder_hidden_states`.
|
74 |
+
text_context_len (`int`, defaults to 77):
|
75 |
+
The context length of the text features.
|
76 |
+
scale (`float`, defaults to 1.0):
|
77 |
+
the weight scale of image prompt.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16):
|
81 |
+
super().__init__()
|
82 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
83 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
84 |
+
self.device = device
|
85 |
+
self.dtype = dtype
|
86 |
+
self.hidden_size = hidden_size
|
87 |
+
self.cross_attention_dim = cross_attention_dim
|
88 |
+
self.total_length = id_length + 1
|
89 |
+
self.id_length = id_length
|
90 |
+
self.id_bank = {}
|
91 |
+
|
92 |
+
def __call__(
|
93 |
+
self,
|
94 |
+
attn,
|
95 |
+
hidden_states,
|
96 |
+
encoder_hidden_states=None,
|
97 |
+
attention_mask=None,
|
98 |
+
temb=None):
|
99 |
+
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
|
100 |
+
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
|
101 |
+
# 生成一个0到1之间的随机数
|
102 |
+
global total_count,attn_count,cur_step,mask1024,mask4096
|
103 |
+
global sa32, sa64
|
104 |
+
global write
|
105 |
+
global height,width
|
106 |
+
if write:
|
107 |
+
# print(f"white:{cur_step}")
|
108 |
+
self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]
|
109 |
+
else:
|
110 |
+
encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),hidden_states[:1],self.id_bank[cur_step][1].to(self.device),hidden_states[1:]))
|
111 |
+
# 判断随机数是否大于0.5
|
112 |
+
if cur_step <5:
|
113 |
+
hidden_states = self.__call2__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
|
114 |
+
else: # 256 1024 4096
|
115 |
+
random_number = random.random()
|
116 |
+
if cur_step <20:
|
117 |
+
rand_num = 0.3
|
118 |
+
else:
|
119 |
+
rand_num = 0.1
|
120 |
+
# print(f"hidden state shape {hidden_states.shape[1]}")
|
121 |
+
if random_number > rand_num:
|
122 |
+
# print("mask shape",mask1024.shape,mask4096.shape)
|
123 |
+
if not write:
|
124 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
125 |
+
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
|
126 |
+
else:
|
127 |
+
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
|
128 |
+
else:
|
129 |
+
# print(self.total_length,self.id_length,hidden_states.shape,(height//32) * (width//32))
|
130 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
131 |
+
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,:mask1024.shape[0] // self.total_length * self.id_length]
|
132 |
+
else:
|
133 |
+
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length,:mask4096.shape[0] // self.total_length * self.id_length]
|
134 |
+
# print(attention_mask.shape)
|
135 |
+
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
|
136 |
+
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
|
137 |
+
else:
|
138 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
139 |
+
attn_count +=1
|
140 |
+
if attn_count == total_count:
|
141 |
+
attn_count = 0
|
142 |
+
cur_step += 1
|
143 |
+
mask1024,mask4096 = cal_attn_mask_xl(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype)
|
144 |
+
|
145 |
+
return hidden_states
|
146 |
+
def __call1__(
|
147 |
+
self,
|
148 |
+
attn,
|
149 |
+
hidden_states,
|
150 |
+
encoder_hidden_states=None,
|
151 |
+
attention_mask=None,
|
152 |
+
temb=None,
|
153 |
+
):
|
154 |
+
# print("hidden state shape",hidden_states.shape,self.id_length)
|
155 |
+
residual = hidden_states
|
156 |
+
# if encoder_hidden_states is not None:
|
157 |
+
# raise Exception("not implement")
|
158 |
+
if attn.spatial_norm is not None:
|
159 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
160 |
+
input_ndim = hidden_states.ndim
|
161 |
+
|
162 |
+
if input_ndim == 4:
|
163 |
+
total_batch_size, channel, height, width = hidden_states.shape
|
164 |
+
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
|
165 |
+
total_batch_size,nums_token,channel = hidden_states.shape
|
166 |
+
img_nums = total_batch_size//2
|
167 |
+
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)
|
168 |
+
|
169 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
170 |
+
|
171 |
+
if attn.group_norm is not None:
|
172 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
173 |
+
|
174 |
+
query = attn.to_q(hidden_states)
|
175 |
+
|
176 |
+
if encoder_hidden_states is None:
|
177 |
+
encoder_hidden_states = hidden_states # B, N, C
|
178 |
+
else:
|
179 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)
|
180 |
+
|
181 |
+
key = attn.to_k(encoder_hidden_states)
|
182 |
+
value = attn.to_v(encoder_hidden_states)
|
183 |
+
|
184 |
+
|
185 |
+
inner_dim = key.shape[-1]
|
186 |
+
head_dim = inner_dim // attn.heads
|
187 |
+
|
188 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
189 |
+
|
190 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
191 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
192 |
+
# print(key.shape,value.shape,query.shape,attention_mask.shape)
|
193 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
194 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
195 |
+
#print(query.shape,key.shape,value.shape,attention_mask.shape)
|
196 |
+
hidden_states = F.scaled_dot_product_attention(
|
197 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
198 |
+
)
|
199 |
+
|
200 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)
|
201 |
+
hidden_states = hidden_states.to(query.dtype)
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
# linear proj
|
206 |
+
hidden_states = attn.to_out[0](hidden_states)
|
207 |
+
# dropout
|
208 |
+
hidden_states = attn.to_out[1](hidden_states)
|
209 |
+
|
210 |
+
# if input_ndim == 4:
|
211 |
+
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
212 |
+
|
213 |
+
# if attn.residual_connection:
|
214 |
+
# tile_hidden_states = tile_hidden_states + residual
|
215 |
+
|
216 |
+
if input_ndim == 4:
|
217 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
|
218 |
+
if attn.residual_connection:
|
219 |
+
hidden_states = hidden_states + residual
|
220 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
221 |
+
# print(hidden_states.shape)
|
222 |
+
return hidden_states
|
223 |
+
def __call2__(
|
224 |
+
self,
|
225 |
+
attn,
|
226 |
+
hidden_states,
|
227 |
+
encoder_hidden_states=None,
|
228 |
+
attention_mask=None,
|
229 |
+
temb=None):
|
230 |
+
residual = hidden_states
|
231 |
+
|
232 |
+
if attn.spatial_norm is not None:
|
233 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
234 |
+
|
235 |
+
input_ndim = hidden_states.ndim
|
236 |
+
|
237 |
+
if input_ndim == 4:
|
238 |
+
batch_size, channel, height, width = hidden_states.shape
|
239 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
240 |
+
|
241 |
+
batch_size, sequence_length, channel = (
|
242 |
+
hidden_states.shape
|
243 |
+
)
|
244 |
+
# print(hidden_states.shape)
|
245 |
+
if attention_mask is not None:
|
246 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
247 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
248 |
+
# (batch, heads, source_length, target_length)
|
249 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
250 |
+
|
251 |
+
if attn.group_norm is not None:
|
252 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
253 |
+
|
254 |
+
query = attn.to_q(hidden_states)
|
255 |
+
|
256 |
+
if encoder_hidden_states is None:
|
257 |
+
encoder_hidden_states = hidden_states # B, N, C
|
258 |
+
else:
|
259 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
|
260 |
+
|
261 |
+
key = attn.to_k(encoder_hidden_states)
|
262 |
+
value = attn.to_v(encoder_hidden_states)
|
263 |
+
|
264 |
+
inner_dim = key.shape[-1]
|
265 |
+
head_dim = inner_dim // attn.heads
|
266 |
+
|
267 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
268 |
+
|
269 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
270 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
271 |
+
|
272 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
273 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
274 |
+
hidden_states = F.scaled_dot_product_attention(
|
275 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
276 |
+
)
|
277 |
+
|
278 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
279 |
+
hidden_states = hidden_states.to(query.dtype)
|
280 |
+
|
281 |
+
# linear proj
|
282 |
+
hidden_states = attn.to_out[0](hidden_states)
|
283 |
+
# dropout
|
284 |
+
hidden_states = attn.to_out[1](hidden_states)
|
285 |
+
|
286 |
+
if input_ndim == 4:
|
287 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
288 |
+
|
289 |
+
if attn.residual_connection:
|
290 |
+
hidden_states = hidden_states + residual
|
291 |
+
|
292 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
293 |
+
|
294 |
+
return hidden_states
|
295 |
+
|
296 |
+
def set_attention_processor(unet,id_length,is_ipadapter = False):
|
297 |
+
global total_count
|
298 |
+
total_count = 0
|
299 |
+
attn_procs = {}
|
300 |
+
for name in unet.attn_processors.keys():
|
301 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
302 |
+
if name.startswith("mid_block"):
|
303 |
+
hidden_size = unet.config.block_out_channels[-1]
|
304 |
+
elif name.startswith("up_blocks"):
|
305 |
+
block_id = int(name[len("up_blocks.")])
|
306 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
307 |
+
elif name.startswith("down_blocks"):
|
308 |
+
block_id = int(name[len("down_blocks.")])
|
309 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
310 |
+
if cross_attention_dim is None:
|
311 |
+
if name.startswith("up_blocks") :
|
312 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
|
313 |
+
total_count +=1
|
314 |
+
else:
|
315 |
+
attn_procs[name] = AttnProcessor()
|
316 |
+
else:
|
317 |
+
if is_ipadapter:
|
318 |
+
attn_procs[name] = IPAttnProcessor2_0(
|
319 |
+
hidden_size=hidden_size,
|
320 |
+
cross_attention_dim=cross_attention_dim,
|
321 |
+
scale=1,
|
322 |
+
num_tokens=4,
|
323 |
+
).to(unet.device, dtype=torch.float16)
|
324 |
+
else:
|
325 |
+
attn_procs[name] = AttnProcessor()
|
326 |
+
|
327 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
328 |
+
print("successsfully load paired self-attention")
|
329 |
+
print(f"number of the processor : {total_count}")
|
330 |
+
#################################################
|
331 |
+
#################################################
|
332 |
+
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
|
333 |
+
load_js = """
|
334 |
+
async () => {
|
335 |
+
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
|
336 |
+
fetch(url)
|
337 |
+
.then(res => res.text())
|
338 |
+
.then(text => {
|
339 |
+
const script = document.createElement('script');
|
340 |
+
script.type = "module"
|
341 |
+
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
|
342 |
+
document.head.appendChild(script);
|
343 |
+
});
|
344 |
+
}
|
345 |
+
"""
|
346 |
+
|
347 |
+
get_js_colors = """
|
348 |
+
async (canvasData) => {
|
349 |
+
const canvasEl = document.getElementById("canvas-root");
|
350 |
+
return [canvasEl._data]
|
351 |
+
}
|
352 |
+
"""
|
353 |
+
|
354 |
+
css = '''
|
355 |
+
#color-bg{display:flex;justify-content: center;align-items: center;}
|
356 |
+
.color-bg-item{width: 100%; height: 32px}
|
357 |
+
#main_button{width:100%}
|
358 |
+
<style>
|
359 |
+
'''
|
360 |
+
|
361 |
+
|
362 |
+
#################################################
|
363 |
+
title = r"""
|
364 |
+
<h1 align="center">StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</h1>
|
365 |
+
"""
|
366 |
+
|
367 |
+
description = r"""
|
368 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'><b>StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</b></a>.<br>
|
369 |
+
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
|
370 |
+
1️⃣ Enter a Textual Description for Character, if you add the Ref-Image, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
|
371 |
+
2️⃣ Enter the prompt array, each line corrsponds to one generated image.<br>
|
372 |
+
3️⃣ Choose your preferred style template.<br>
|
373 |
+
4️⃣ Click the <b>Submit</b> button to start customizing.
|
374 |
+
"""
|
375 |
+
|
376 |
+
article = r"""
|
377 |
+
|
378 |
+
If StoryDiffusion is helpful, please help to ⭐ the <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'>Github Repo</a>. Thanks!
|
379 |
+
[![GitHub Stars](https://img.shields.io/github/stars/HVision-NKU/StoryDiffusion?style=social)](https://github.com/HVision-NKU/StoryDiffusion)
|
380 |
+
---
|
381 |
+
📝 **Citation**
|
382 |
+
<br>
|
383 |
+
If our work is useful for your research, please consider citing:
|
384 |
+
|
385 |
+
```bibtex
|
386 |
+
@article{Zhou2024storydiffusion,
|
387 |
+
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
|
388 |
+
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
|
389 |
+
year={2024}
|
390 |
+
}
|
391 |
+
```
|
392 |
+
📋 **License**
|
393 |
+
<br>
|
394 |
+
The Contents you create are under Apache-2.0 LICENSE. The Code are under Attribution-NonCommercial 4.0 International.
|
395 |
+
|
396 |
+
📧 **Contact**
|
397 |
+
<br>
|
398 |
+
If you have any questions, please feel free to reach me out at <b>ypzhousdu@gmail.com</b>.
|
399 |
+
"""
|
400 |
+
version = r"""
|
401 |
+
<h3 align="center">StoryDiffusion Version 0.01 (test version)</h3>
|
402 |
+
|
403 |
+
<h5 >1. Support image ref image. (Cartoon Ref image is not support now)</h5>
|
404 |
+
<h5 >2. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5>
|
405 |
+
<h5 >3. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling."),Currently, support is only using Textual Description</h5>
|
406 |
+
<h5 align="center">Tips: Not Ready Now! Just Test</h5>
|
407 |
+
"""
|
408 |
+
#################################################
|
409 |
+
global attn_count, total_count, id_length, total_length,cur_step, cur_model_type
|
410 |
+
global write
|
411 |
+
global sa32, sa64
|
412 |
+
global height,width
|
413 |
+
attn_count = 0
|
414 |
+
total_count = 0
|
415 |
+
cur_step = 0
|
416 |
+
id_length = 4
|
417 |
+
total_length = 5
|
418 |
+
cur_model_type = ""
|
419 |
+
device="cuda"
|
420 |
+
global attn_procs,unet
|
421 |
+
attn_procs = {}
|
422 |
+
###
|
423 |
+
write = False
|
424 |
+
###
|
425 |
+
sa32 = 0.5
|
426 |
+
sa64 = 0.5
|
427 |
+
height = 768
|
428 |
+
width = 768
|
429 |
+
###
|
430 |
+
global sd_model_path
|
431 |
+
sd_model_path = models_dict["Unstable"]#"SG161222/RealVisXL_V4.0"
|
432 |
+
use_safetensors= False
|
433 |
+
### LOAD Stable Diffusion Pipeline
|
434 |
+
pipe1 = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors= use_safetensors)
|
435 |
+
pipe1 = pipe1.to("cuda")
|
436 |
+
pipe1.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
437 |
+
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
438 |
+
pipe1.scheduler.set_timesteps(50)
|
439 |
+
###
|
440 |
+
pipe2 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
441 |
+
sd_model_path, torch_dtype=torch.float16, use_safetensors=use_safetensors)
|
442 |
+
pipe2 = pipe2.to("cuda")
|
443 |
+
pipe2.load_photomaker_adapter(
|
444 |
+
os.path.dirname(photomaker_path),
|
445 |
+
subfolder="",
|
446 |
+
weight_name=os.path.basename(photomaker_path),
|
447 |
+
trigger_word="img" # define the trigger word
|
448 |
+
)
|
449 |
+
pipe2 = pipe2.to("cuda")
|
450 |
+
pipe2.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
451 |
+
pipe2.fuse_lora()
|
452 |
+
|
453 |
+
######### Gradio Fuction #############
|
454 |
+
|
455 |
+
def swap_to_gallery(images):
|
456 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
457 |
+
|
458 |
+
def upload_example_to_gallery(images, prompt, style, negative_prompt):
|
459 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
460 |
+
|
461 |
+
def remove_back_to_files():
|
462 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
463 |
+
|
464 |
+
def remove_tips():
|
465 |
+
return gr.update(visible=False)
|
466 |
+
|
467 |
+
def apply_style_positive(style_name: str, positive: str):
|
468 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
469 |
+
return p.replace("{prompt}", positive)
|
470 |
+
|
471 |
+
def apply_style(style_name: str, positives: list, negative: str = ""):
|
472 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
473 |
+
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
|
474 |
+
|
475 |
+
def change_visiale_by_model_type(_model_type):
|
476 |
+
if _model_type == "Only Using Textual Description":
|
477 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
478 |
+
elif _model_type == "Using Ref Images":
|
479 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
480 |
+
else:
|
481 |
+
raise ValueError("Invalid model type",_model_type)
|
482 |
+
|
483 |
+
|
484 |
+
######### Image Generation ##############
|
485 |
+
@spaces.GPU
|
486 |
+
def process_generation(_sd_type,_model_type,_upload_images, _num_steps,style_name, _Ip_Adapter_Strength ,_style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt,prompt_array,G_height,G_width,_comic_type):
|
487 |
+
_model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
|
488 |
+
if _model_type == "Photomaker" and "img" not in general_prompt:
|
489 |
+
raise gr.Error("Please add the triger word \" img \" behind the class word you want to customize, such as: man img or woman img")
|
490 |
+
if _upload_images is None and _model_type != "original":
|
491 |
+
raise gr.Error(f"Cannot find any input face image!")
|
492 |
+
global sa32, sa64,id_length,total_length,attn_procs,unet,cur_model_type,device
|
493 |
+
global write
|
494 |
+
global cur_step,attn_count
|
495 |
+
global height,width
|
496 |
+
height = G_height
|
497 |
+
width = G_width
|
498 |
+
global pipe1,pipe2
|
499 |
+
global sd_model_path,models_dict
|
500 |
+
sd_model_path = models_dict[_sd_type]
|
501 |
+
use_safe_tensor = True
|
502 |
+
if _model_type == "original":
|
503 |
+
pipe = pipe1
|
504 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
505 |
+
elif _model_type == "Photomaker":
|
506 |
+
pipe = pipe2
|
507 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
508 |
+
else:
|
509 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
510 |
+
##### ########################
|
511 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
512 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
513 |
+
cur_model_type = _sd_type+"-"+_model_type+""+str(id_length_)
|
514 |
+
if _model_type != "original":
|
515 |
+
input_id_images = []
|
516 |
+
for img in _upload_images:
|
517 |
+
print(img)
|
518 |
+
input_id_images.append(load_image(img))
|
519 |
+
prompts = prompt_array.splitlines()
|
520 |
+
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
|
521 |
+
if start_merge_step > 30:
|
522 |
+
start_merge_step = 30
|
523 |
+
print(f"start_merge_step:{start_merge_step}")
|
524 |
+
generator = torch.Generator(device="cuda").manual_seed(seed_)
|
525 |
+
sa32, sa64 = sa32_, sa64_
|
526 |
+
id_length = id_length_
|
527 |
+
clipped_prompts = prompts[:]
|
528 |
+
prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace("[NC]","") for prompt in clipped_prompts]
|
529 |
+
prompts = [prompt.rpartition('#')[0] if "#" in prompt else prompt for prompt in prompts]
|
530 |
+
print(prompts)
|
531 |
+
id_prompts = prompts[:id_length]
|
532 |
+
real_prompts = prompts[id_length:]
|
533 |
+
torch.cuda.empty_cache()
|
534 |
+
write = True
|
535 |
+
cur_step = 0
|
536 |
+
|
537 |
+
attn_count = 0
|
538 |
+
id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)
|
539 |
+
setup_seed(seed_)
|
540 |
+
total_results = []
|
541 |
+
if _model_type == "original":
|
542 |
+
id_images = pipe(id_prompts, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
543 |
+
elif _model_type == "Photomaker":
|
544 |
+
id_images = pipe(id_prompts,input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
545 |
+
else:
|
546 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
547 |
+
total_results = id_images + total_results
|
548 |
+
yield total_results
|
549 |
+
real_images = []
|
550 |
+
write = False
|
551 |
+
for real_prompt in real_prompts:
|
552 |
+
setup_seed(seed_)
|
553 |
+
cur_step = 0
|
554 |
+
real_prompt = apply_style_positive(style_name, real_prompt)
|
555 |
+
if _model_type == "original":
|
556 |
+
real_images.append(pipe(real_prompt, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])
|
557 |
+
elif _model_type == "Photomaker":
|
558 |
+
real_images.append(pipe(real_prompt, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])
|
559 |
+
else:
|
560 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
561 |
+
total_results = [real_images[-1]] + total_results
|
562 |
+
yield total_results
|
563 |
+
if _comic_type != "No typesetting (default)":
|
564 |
+
captions= prompt_array.splitlines()
|
565 |
+
captions = [caption.replace("[NC]","") for caption in captions]
|
566 |
+
captions = [caption.split('#')[-1] if "#" in caption else caption for caption in captions]
|
567 |
+
from PIL import ImageFont
|
568 |
+
total_results = get_comic(id_images + real_images, _comic_type,captions= captions,font=ImageFont.truetype("./fonts/Inkfree.ttf", int(45))) + total_results
|
569 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
570 |
+
yield total_results
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
def array2string(arr):
|
575 |
+
stringtmp = ""
|
576 |
+
for i,part in enumerate(arr):
|
577 |
+
if i != len(arr)-1:
|
578 |
+
stringtmp += part +"\n"
|
579 |
+
else:
|
580 |
+
stringtmp += part
|
581 |
+
|
582 |
+
return stringtmp
|
583 |
+
|
584 |
+
|
585 |
+
#################################################
|
586 |
+
#################################################
|
587 |
+
### define the interface
|
588 |
+
with gr.Blocks(css=css) as demo:
|
589 |
+
binary_matrixes = gr.State([])
|
590 |
+
color_layout = gr.State([])
|
591 |
+
|
592 |
+
# gr.Markdown(logo)
|
593 |
+
gr.Markdown(title)
|
594 |
+
gr.Markdown(description)
|
595 |
+
|
596 |
+
with gr.Row():
|
597 |
+
with gr.Group(elem_id="main-image"):
|
598 |
+
# button_run = gr.Button("generate id images ! 😺", elem_id="main_button", interactive=True)
|
599 |
+
|
600 |
+
prompts = []
|
601 |
+
colors = []
|
602 |
+
# with gr.Column(visible=False) as post_sketch:
|
603 |
+
# for n in range(MAX_COLORS):
|
604 |
+
# if n == 0 :
|
605 |
+
# with gr.Row(visible=False) as color_row[n]:
|
606 |
+
# colors.append(gr.Image(shape=(100, 100), label="background", type="pil", image_mode="RGB", width=100, height=100))
|
607 |
+
# prompts.append(gr.Textbox(label="Prompt for the background (white region)", value=""))
|
608 |
+
# else:
|
609 |
+
# with gr.Row(visible=False) as color_row[n]:
|
610 |
+
# colors.append(gr.Image(shape=(100, 100), label="segment "+str(n), type="pil", image_mode="RGB", width=100, height=100))
|
611 |
+
# prompts.append(gr.Textbox(label="Prompt for the segment "+str(n)))
|
612 |
+
|
613 |
+
# get_genprompt_run = gr.Button("(2) I've finished segment labeling ! 😺", elem_id="prompt_button", interactive=True)
|
614 |
+
|
615 |
+
with gr.Column(visible=True) as gen_prompt_vis:
|
616 |
+
sd_type = gr.Dropdown(choices=list(models_dict.keys()), value = "Unstable",label="sd_type", info="Select pretrained model")
|
617 |
+
model_type = gr.Radio(["Only Using Textual Description", "Using Ref Images"], label="model_type", value = "Only Using Textual Description", info="Control type of the Character")
|
618 |
+
with gr.Group(visible=False) as control_image_input:
|
619 |
+
files = gr.Files(
|
620 |
+
label="Drag (Select) 1 or more photos of your face",
|
621 |
+
file_types=["image"],
|
622 |
+
)
|
623 |
+
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
|
624 |
+
with gr.Column(visible=False) as clear_button:
|
625 |
+
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
626 |
+
general_prompt = gr.Textbox(value='', label="(1) Textual Description for Character", interactive=True)
|
627 |
+
negative_prompt = gr.Textbox(value='', label="(2) Negative_prompt", interactive=True)
|
628 |
+
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
629 |
+
prompt_array = gr.Textbox(lines = 3,value='', label="(3) Comic Description (each line corresponds to a frame).", interactive=True)
|
630 |
+
with gr.Accordion("(4) Tune the hyperparameters", open=True):
|
631 |
+
#sa16_ = gr.Slider(label=" (The degree of Paired Attention at 16 x 16 self-attention layers) ", minimum=0, maximum=1., value=0.3, step=0.1)
|
632 |
+
sa32_ = gr.Slider(label=" (The degree of Paired Attention at 32 x 32 self-attention layers) ", minimum=0, maximum=1., value=0.7, step=0.1)
|
633 |
+
sa64_ = gr.Slider(label=" (The degree of Paired Attention at 64 x 64 self-attention layers) ", minimum=0, maximum=1., value=0.7, step=0.1)
|
634 |
+
id_length_ = gr.Slider(label= "Number of id images in total images" , minimum=2, maximum=4, value=2, step=1)
|
635 |
+
# total_length_ = gr.Slider(label= "Number of total images", minimum=1, maximum=20, value=1, step=1)
|
636 |
+
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1)
|
637 |
+
num_steps = gr.Slider(
|
638 |
+
label="Number of sample steps",
|
639 |
+
minimum=20,
|
640 |
+
maximum=100,
|
641 |
+
step=1,
|
642 |
+
value=50,
|
643 |
+
)
|
644 |
+
G_height = gr.Slider(
|
645 |
+
label="height",
|
646 |
+
minimum=256,
|
647 |
+
maximum=1024,
|
648 |
+
step=32,
|
649 |
+
value=768,
|
650 |
+
)
|
651 |
+
G_width = gr.Slider(
|
652 |
+
label="width",
|
653 |
+
minimum=256,
|
654 |
+
maximum=1024,
|
655 |
+
step=32,
|
656 |
+
value=768,
|
657 |
+
)
|
658 |
+
comic_type = gr.Radio(["No typesetting (default)", "Four Pannel", "Classic Comic Style"], value = "Classic Comic Style", label="Typesetting Style", info="Select the typesetting style ")
|
659 |
+
guidance_scale = gr.Slider(
|
660 |
+
label="Guidance scale",
|
661 |
+
minimum=0.1,
|
662 |
+
maximum=10.0,
|
663 |
+
step=0.1,
|
664 |
+
value=5,
|
665 |
+
)
|
666 |
+
style_strength_ratio = gr.Slider(
|
667 |
+
label="Style strength of Ref Image (%)",
|
668 |
+
minimum=15,
|
669 |
+
maximum=50,
|
670 |
+
step=1,
|
671 |
+
value=20,
|
672 |
+
visible=False
|
673 |
+
)
|
674 |
+
Ip_Adapter_Strength = gr.Slider(
|
675 |
+
label="Ip_Adapter_Strength",
|
676 |
+
minimum=0,
|
677 |
+
maximum=1,
|
678 |
+
step=0.1,
|
679 |
+
value=0.5,
|
680 |
+
visible=False
|
681 |
+
)
|
682 |
+
final_run_btn = gr.Button("Generate ! 😺")
|
683 |
+
|
684 |
+
|
685 |
+
with gr.Column():
|
686 |
+
out_image = gr.Gallery(label="Result", columns=2, height='auto')
|
687 |
+
generated_information = gr.Markdown(label="Generation Details", value="",visible=False)
|
688 |
+
gr.Markdown(version)
|
689 |
+
model_type.change(fn = change_visiale_by_model_type , inputs = model_type, outputs=[control_image_input,style_strength_ratio,Ip_Adapter_Strength])
|
690 |
+
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
|
691 |
+
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
|
692 |
+
|
693 |
+
final_run_btn.click(fn=set_text_unfinished, outputs = generated_information
|
694 |
+
).then(process_generation, inputs=[sd_type,model_type,files, num_steps,style, Ip_Adapter_Strength,style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,G_height,G_width,comic_type], outputs=out_image
|
695 |
+
).then(fn=set_text_finished,outputs = generated_information)
|
696 |
+
|
697 |
+
|
698 |
+
gr.Examples(
|
699 |
+
examples=[
|
700 |
+
[1,0.5,0.5,3,"a woman img, wearing a white T-shirt, blue loose hair",
|
701 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
702 |
+
array2string(["wake up in the bed",
|
703 |
+
"have breakfast",
|
704 |
+
"is on the road, go to company",
|
705 |
+
"work in the company",
|
706 |
+
"Take a walk next to the company at noon",
|
707 |
+
"lying in bed at night"]),
|
708 |
+
"Japanese Anime", "Using Ref Images",get_image_path_list('./examples/taylor'),768,768
|
709 |
+
],
|
710 |
+
[0,0.5,0.5,2,"a man, wearing black jacket",
|
711 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
712 |
+
array2string(["wake up in the bed",
|
713 |
+
"have breakfast",
|
714 |
+
"is on the road, go to the company, close look",
|
715 |
+
"work in the company",
|
716 |
+
"laughing happily",
|
717 |
+
"lying in bed at night"
|
718 |
+
]),
|
719 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
720 |
+
],
|
721 |
+
[0,0.3,0.5,2,"a girl, wearing white shirt, black skirt, black tie, yellow hair",
|
722 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
723 |
+
array2string([
|
724 |
+
"at home #at home, began to go to drawing",
|
725 |
+
"sitting alone on a park bench.",
|
726 |
+
"reading a book on a park bench.",
|
727 |
+
"[NC]A squirrel approaches, peeking over the bench. ",
|
728 |
+
"look around in the park. # She looks around and enjoys the beauty of nature.",
|
729 |
+
"[NC]leaf falls from the tree, landing on the sketchbook.",
|
730 |
+
"picks up the leaf, examining its details closely.",
|
731 |
+
"starts sketching the leaf with intricate lines.",
|
732 |
+
"holds up the sketch drawing of the leaf.",
|
733 |
+
"[NC]The brown squirrel appear.",
|
734 |
+
"is very happy # She is very happy to see the squirrel again",
|
735 |
+
"[NC]The brown squirrel takes the cracker and scampers up a tree. # She gives the squirrel cracker",
|
736 |
+
"laughs and tucks the leaf into her book as a keepsake.",
|
737 |
+
"ready to leave.",]),
|
738 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
739 |
+
]
|
740 |
+
],
|
741 |
+
inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,style,model_type,files,G_height,G_width],
|
742 |
+
# outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
|
743 |
+
# run_on_click=True,
|
744 |
+
label='😺 Examples 😺',
|
745 |
+
)
|
746 |
+
gr.Markdown(article)
|
747 |
+
|
748 |
+
# demo.load(None, None, None, _js=load_js)
|
749 |
+
|
750 |
+
demo.launch(server_name="0.0.0.0", share = True if use_va else False)
|
cog.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration for Cog ⚙️
|
2 |
+
# Reference: https://cog.run/yaml
|
3 |
+
|
4 |
+
build:
|
5 |
+
gpu: true
|
6 |
+
system_packages:
|
7 |
+
- "libgl1-mesa-glx"
|
8 |
+
- "libglib2.0-0"
|
9 |
+
python_version: "3.11"
|
10 |
+
python_packages:
|
11 |
+
- xformers==0.0.20
|
12 |
+
- torch==2.0.1
|
13 |
+
- torchvision==0.15.2
|
14 |
+
- diffusers==0.25.0
|
15 |
+
- transformers==4.36.2
|
16 |
+
- gradio==3.48.0
|
17 |
+
- accelerate
|
18 |
+
- safetensors
|
19 |
+
- peft
|
20 |
+
- Pillow==9.5.0
|
21 |
+
run:
|
22 |
+
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.6.0/pget_linux_x86_64" && chmod +x /usr/local/bin/pget
|
23 |
+
predict: "predict.py:Predictor"
|
config/models.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Juggernaut:
|
2 |
+
path: "https://huggingface.co/RunDiffusion/Juggernaut-XL-v9/blob/main/Juggernaut-XL_v9_RunDiffusionPhoto_v2.safetensors"
|
3 |
+
single_files: true ### if true, is a civitai model
|
4 |
+
use_safetensors: true
|
5 |
+
|
6 |
+
RealVision:
|
7 |
+
path: "SG161222/RealVisXL_V4.0"
|
8 |
+
single_files: false
|
9 |
+
use_safetensors: true
|
10 |
+
|
11 |
+
SDXL:
|
12 |
+
path: "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
single_files: false
|
14 |
+
use_safetensors: true
|
15 |
+
|
16 |
+
Unstable:
|
17 |
+
path: "stablediffusionapi/sdxl-unstable-diffusers-y"
|
18 |
+
single_files: false
|
19 |
+
use_safetensors: false
|
examples/Robert/images.jpeg
ADDED
examples/lecun/yann-lecun2.png
ADDED
examples/taylor/1-1.png
ADDED
fonts/Inkfree.ttf
ADDED
Binary file (41.2 kB). View file
|
|
gradio_app_sdxl_specific_id_low_vram.py
ADDED
@@ -0,0 +1,807 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from email.policy import default
|
2 |
+
from this import d
|
3 |
+
from webbrowser import get
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import gc
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import requests
|
10 |
+
import random
|
11 |
+
import os
|
12 |
+
import sys
|
13 |
+
import pickle
|
14 |
+
from PIL import Image
|
15 |
+
from tqdm.auto import tqdm
|
16 |
+
from datetime import datetime
|
17 |
+
from utils.gradio_utils import is_torch2_available
|
18 |
+
if is_torch2_available():
|
19 |
+
from utils.gradio_utils import \
|
20 |
+
AttnProcessor2_0 as AttnProcessor
|
21 |
+
else:
|
22 |
+
from utils.gradio_utils import AttnProcessor
|
23 |
+
|
24 |
+
import diffusers
|
25 |
+
from diffusers import StableDiffusionXLPipeline
|
26 |
+
from utils import PhotoMakerStableDiffusionXLPipeline
|
27 |
+
from diffusers import DDIMScheduler
|
28 |
+
import torch.nn.functional as F
|
29 |
+
from utils.gradio_utils import cal_attn_mask_xl,cal_attn_indice_xl_effcient_memory
|
30 |
+
import copy
|
31 |
+
import os
|
32 |
+
from diffusers.utils import load_image
|
33 |
+
from utils.utils import get_comic
|
34 |
+
from utils.style_template import styles
|
35 |
+
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder"
|
36 |
+
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin"
|
37 |
+
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
|
38 |
+
STYLE_NAMES = list(styles.keys())
|
39 |
+
DEFAULT_STYLE_NAME = "Japanese Anime"
|
40 |
+
global models_dict
|
41 |
+
from utils.load_models_utils import get_models_dict,load_models
|
42 |
+
models_dict = get_models_dict()
|
43 |
+
|
44 |
+
|
45 |
+
photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
|
46 |
+
MAX_SEED = np.iinfo(np.int32).max
|
47 |
+
def setup_seed(seed):
|
48 |
+
torch.manual_seed(seed)
|
49 |
+
torch.cuda.manual_seed_all(seed)
|
50 |
+
np.random.seed(seed)
|
51 |
+
random.seed(seed)
|
52 |
+
torch.backends.cudnn.deterministic = True
|
53 |
+
def set_text_unfinished():
|
54 |
+
return gr.update(visible=True, value="<h3>(Not Finished) Generating ··· The intermediate results will be shown.</h3>")
|
55 |
+
def set_text_finished():
|
56 |
+
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
|
57 |
+
#################################################
|
58 |
+
def get_image_path_list(folder_name):
|
59 |
+
image_basename_list = os.listdir(folder_name)
|
60 |
+
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
|
61 |
+
return image_path_list
|
62 |
+
|
63 |
+
#################################################
|
64 |
+
class SpatialAttnProcessor2_0(torch.nn.Module):
|
65 |
+
r"""
|
66 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
67 |
+
Args:
|
68 |
+
hidden_size (`int`):
|
69 |
+
The hidden size of the attention layer.
|
70 |
+
cross_attention_dim (`int`):
|
71 |
+
The number of channels in the `encoder_hidden_states`.
|
72 |
+
text_context_len (`int`, defaults to 77):
|
73 |
+
The context length of the text features.
|
74 |
+
scale (`float`, defaults to 1.0):
|
75 |
+
the weight scale of image prompt.
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16):
|
79 |
+
super().__init__()
|
80 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
81 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
82 |
+
self.device = device
|
83 |
+
self.dtype = dtype
|
84 |
+
self.hidden_size = hidden_size
|
85 |
+
self.cross_attention_dim = cross_attention_dim
|
86 |
+
self.total_length = id_length + 1
|
87 |
+
self.id_length = id_length
|
88 |
+
self.id_bank = {}
|
89 |
+
|
90 |
+
def __call__(
|
91 |
+
self,
|
92 |
+
attn,
|
93 |
+
hidden_states,
|
94 |
+
encoder_hidden_states=None,
|
95 |
+
attention_mask=None,
|
96 |
+
temb=None):
|
97 |
+
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
|
98 |
+
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
|
99 |
+
# 生成一个0到1之间的随机数
|
100 |
+
global total_count,attn_count,cur_step, indices1024,indices4096
|
101 |
+
global sa32, sa64
|
102 |
+
global write
|
103 |
+
global height,width
|
104 |
+
if attn_count == 0 and cur_step == 0:
|
105 |
+
indices1024,indices4096 = cal_attn_indice_xl_effcient_memory(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype)
|
106 |
+
if write:
|
107 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
108 |
+
indices = indices1024
|
109 |
+
else:
|
110 |
+
indices = indices4096
|
111 |
+
# print(f"white:{cur_step}")
|
112 |
+
total_batch_size,nums_token,channel = hidden_states.shape
|
113 |
+
img_nums = total_batch_size // 2
|
114 |
+
hidden_states = hidden_states.reshape(-1,img_nums,nums_token,channel)
|
115 |
+
self.id_bank[cur_step] = [hidden_states[:,img_ind,indices[img_ind],:].reshape(2,-1,channel).clone() for img_ind in range(img_nums)]
|
116 |
+
hidden_states = hidden_states.reshape(-1,nums_token,channel)
|
117 |
+
#self.id_bank[cur_step] = [hidden_states[:self.id_length].clone(), hidden_states[self.id_length:].clone()]
|
118 |
+
else:
|
119 |
+
#encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),self.id_bank[cur_step][1].to(self.device)))
|
120 |
+
encoder_arr = [tensor.to(self.device) for tensor in self.id_bank[cur_step]]
|
121 |
+
# 判断随机数是否大于0.5
|
122 |
+
if cur_step <1:
|
123 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
124 |
+
else: # 256 1024 4096
|
125 |
+
random_number = random.random()
|
126 |
+
if cur_step <20:
|
127 |
+
rand_num = 0.3
|
128 |
+
else:
|
129 |
+
rand_num = 0.1
|
130 |
+
# print(f"hidden state shape {hidden_states.shape[1]}")
|
131 |
+
if random_number > rand_num:
|
132 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
133 |
+
indices = indices1024
|
134 |
+
else:
|
135 |
+
indices = indices4096
|
136 |
+
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
|
137 |
+
if write:
|
138 |
+
total_batch_size,nums_token,channel = hidden_states.shape
|
139 |
+
img_nums = total_batch_size // 2
|
140 |
+
hidden_states = hidden_states.reshape(-1,img_nums,nums_token,channel)
|
141 |
+
encoder_arr = [hidden_states[:,img_ind,indices[img_ind],:].reshape(2,-1,channel) for img_ind in range(img_nums)]
|
142 |
+
for img_ind in range(img_nums):
|
143 |
+
encoder_hidden_states_tmp = torch.cat(encoder_arr[0:img_ind] + encoder_arr[img_ind+1:] + [hidden_states[:,img_ind,:,:]],dim=1)
|
144 |
+
hidden_states[:,img_ind,:,:] = self.__call2__(attn, hidden_states[:,img_ind,:,:],encoder_hidden_states_tmp,None,temb)
|
145 |
+
else:
|
146 |
+
_,nums_token,channel = hidden_states.shape
|
147 |
+
# img_nums = total_batch_size // 2
|
148 |
+
# encoder_hidden_states = encoder_hidden_states.reshape(-1,img_nums,nums_token,channel)
|
149 |
+
hidden_states = hidden_states.reshape(2,-1,nums_token,channel)
|
150 |
+
# print(len(indices))
|
151 |
+
# encoder_arr = [encoder_hidden_states[:,img_ind,indices[img_ind],:].reshape(2,-1,channel) for img_ind in range(img_nums)]
|
152 |
+
encoder_hidden_states_tmp = torch.cat(encoder_arr+[hidden_states[:,0,:,:]],dim=1)
|
153 |
+
hidden_states[:,0,:,:] = self.__call2__(attn, hidden_states[:,0,:,:],encoder_hidden_states_tmp,None,temb)
|
154 |
+
hidden_states = hidden_states.reshape(-1,nums_token,channel)
|
155 |
+
else:
|
156 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
157 |
+
attn_count +=1
|
158 |
+
if attn_count == total_count:
|
159 |
+
attn_count = 0
|
160 |
+
cur_step += 1
|
161 |
+
indices1024,indices4096 = cal_attn_indice_xl_effcient_memory(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype)
|
162 |
+
|
163 |
+
return hidden_states
|
164 |
+
def __call1__(
|
165 |
+
self,
|
166 |
+
attn,
|
167 |
+
hidden_states,
|
168 |
+
encoder_hidden_states=None,
|
169 |
+
attention_mask=None,
|
170 |
+
temb=None,
|
171 |
+
attn_indices = None,
|
172 |
+
):
|
173 |
+
# print("hidden state shape",hidden_states.shape,self.id_length)
|
174 |
+
residual = hidden_states
|
175 |
+
# if encoder_hidden_states is not None:
|
176 |
+
# raise Exception("not implement")
|
177 |
+
if attn.spatial_norm is not None:
|
178 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
179 |
+
input_ndim = hidden_states.ndim
|
180 |
+
|
181 |
+
if input_ndim == 4:
|
182 |
+
total_batch_size, channel, height, width = hidden_states.shape
|
183 |
+
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
|
184 |
+
total_batch_size,nums_token,channel = hidden_states.shape
|
185 |
+
img_nums = total_batch_size//2
|
186 |
+
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)
|
187 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
188 |
+
|
189 |
+
if attn.group_norm is not None:
|
190 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
191 |
+
|
192 |
+
query = attn.to_q(hidden_states)
|
193 |
+
|
194 |
+
if encoder_hidden_states is None:
|
195 |
+
encoder_hidden_states = hidden_states # B, N, C
|
196 |
+
else:
|
197 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)
|
198 |
+
|
199 |
+
key = attn.to_k(encoder_hidden_states)
|
200 |
+
value = attn.to_v(encoder_hidden_states)
|
201 |
+
|
202 |
+
|
203 |
+
inner_dim = key.shape[-1]
|
204 |
+
head_dim = inner_dim // attn.heads
|
205 |
+
|
206 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
207 |
+
|
208 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
209 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
210 |
+
# print(key.shape,value.shape,query.shape,attention_mask.shape)
|
211 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
212 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
213 |
+
#print(query.shape,key.shape,value.shape,attention_mask.shape)
|
214 |
+
hidden_states = F.scaled_dot_product_attention(
|
215 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
216 |
+
)
|
217 |
+
|
218 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)
|
219 |
+
hidden_states = hidden_states.to(query.dtype)
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
# linear proj
|
224 |
+
hidden_states = attn.to_out[0](hidden_states)
|
225 |
+
# dropout
|
226 |
+
hidden_states = attn.to_out[1](hidden_states)
|
227 |
+
|
228 |
+
# if input_ndim == 4:
|
229 |
+
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
230 |
+
|
231 |
+
# if attn.residual_connection:
|
232 |
+
# tile_hidden_states = tile_hidden_states + residual
|
233 |
+
|
234 |
+
if input_ndim == 4:
|
235 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
|
236 |
+
if attn.residual_connection:
|
237 |
+
hidden_states = hidden_states + residual
|
238 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
239 |
+
# print(hidden_states.shape)
|
240 |
+
return hidden_states
|
241 |
+
def __call2__(
|
242 |
+
self,
|
243 |
+
attn,
|
244 |
+
hidden_states,
|
245 |
+
encoder_hidden_states=None,
|
246 |
+
attention_mask=None,
|
247 |
+
temb=None):
|
248 |
+
residual = hidden_states
|
249 |
+
|
250 |
+
if attn.spatial_norm is not None:
|
251 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
252 |
+
|
253 |
+
input_ndim = hidden_states.ndim
|
254 |
+
|
255 |
+
if input_ndim == 4:
|
256 |
+
batch_size, channel, height, width = hidden_states.shape
|
257 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
258 |
+
|
259 |
+
batch_size, sequence_length, channel = (
|
260 |
+
hidden_states.shape
|
261 |
+
)
|
262 |
+
# print(hidden_states.shape)
|
263 |
+
if attention_mask is not None:
|
264 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
265 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
266 |
+
# (batch, heads, source_length, target_length)
|
267 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
268 |
+
|
269 |
+
if attn.group_norm is not None:
|
270 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
271 |
+
|
272 |
+
query = attn.to_q(hidden_states)
|
273 |
+
|
274 |
+
if encoder_hidden_states is None:
|
275 |
+
encoder_hidden_states = hidden_states # B, N, C
|
276 |
+
# else:
|
277 |
+
# encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
|
278 |
+
|
279 |
+
key = attn.to_k(encoder_hidden_states)
|
280 |
+
value = attn.to_v(encoder_hidden_states)
|
281 |
+
|
282 |
+
inner_dim = key.shape[-1]
|
283 |
+
head_dim = inner_dim // attn.heads
|
284 |
+
|
285 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
286 |
+
|
287 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
288 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
289 |
+
|
290 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
291 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
292 |
+
hidden_states = F.scaled_dot_product_attention(
|
293 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
294 |
+
)
|
295 |
+
|
296 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
297 |
+
hidden_states = hidden_states.to(query.dtype)
|
298 |
+
|
299 |
+
# linear proj
|
300 |
+
hidden_states = attn.to_out[0](hidden_states)
|
301 |
+
# dropout
|
302 |
+
hidden_states = attn.to_out[1](hidden_states)
|
303 |
+
|
304 |
+
if input_ndim == 4:
|
305 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
306 |
+
|
307 |
+
if attn.residual_connection:
|
308 |
+
hidden_states = hidden_states + residual
|
309 |
+
|
310 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
311 |
+
|
312 |
+
return hidden_states
|
313 |
+
|
314 |
+
def set_attention_processor(unet,id_length,is_ipadapter = False):
|
315 |
+
global attn_procs
|
316 |
+
attn_procs = {}
|
317 |
+
for name in unet.attn_processors.keys():
|
318 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
319 |
+
if name.startswith("mid_block"):
|
320 |
+
hidden_size = unet.config.block_out_channels[-1]
|
321 |
+
elif name.startswith("up_blocks"):
|
322 |
+
block_id = int(name[len("up_blocks.")])
|
323 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
324 |
+
elif name.startswith("down_blocks"):
|
325 |
+
block_id = int(name[len("down_blocks.")])
|
326 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
327 |
+
if cross_attention_dim is None:
|
328 |
+
if name.startswith("up_blocks") :
|
329 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
|
330 |
+
else:
|
331 |
+
attn_procs[name] = AttnProcessor()
|
332 |
+
else:
|
333 |
+
if is_ipadapter:
|
334 |
+
attn_procs[name] = IPAttnProcessor2_0(
|
335 |
+
hidden_size=hidden_size,
|
336 |
+
cross_attention_dim=cross_attention_dim,
|
337 |
+
scale=1,
|
338 |
+
num_tokens=4,
|
339 |
+
).to(unet.device, dtype=torch.float16)
|
340 |
+
else:
|
341 |
+
attn_procs[name] = AttnProcessor()
|
342 |
+
|
343 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
344 |
+
#################################################
|
345 |
+
#################################################
|
346 |
+
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
|
347 |
+
load_js = """
|
348 |
+
async () => {
|
349 |
+
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
|
350 |
+
fetch(url)
|
351 |
+
.then(res => res.text())
|
352 |
+
.then(text => {
|
353 |
+
const script = document.createElement('script');
|
354 |
+
script.type = "module"
|
355 |
+
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
|
356 |
+
document.head.appendChild(script);
|
357 |
+
});
|
358 |
+
}
|
359 |
+
"""
|
360 |
+
|
361 |
+
get_js_colors = """
|
362 |
+
async (canvasData) => {
|
363 |
+
const canvasEl = document.getElementById("canvas-root");
|
364 |
+
return [canvasEl._data]
|
365 |
+
}
|
366 |
+
"""
|
367 |
+
|
368 |
+
css = '''
|
369 |
+
#color-bg{display:flex;justify-content: center;align-items: center;}
|
370 |
+
.color-bg-item{width: 100%; height: 32px}
|
371 |
+
#main_button{width:100%}
|
372 |
+
<style>
|
373 |
+
'''
|
374 |
+
|
375 |
+
|
376 |
+
#################################################
|
377 |
+
title = r"""
|
378 |
+
<h1 align="center">StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</h1>
|
379 |
+
"""
|
380 |
+
|
381 |
+
description = r"""
|
382 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'><b>StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</b></a>.<br>
|
383 |
+
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
|
384 |
+
1️⃣ Enter a Textual Description for Character, if you add the Ref-Image, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
|
385 |
+
2️⃣ Enter the prompt array, each line corrsponds to one generated image.<br>
|
386 |
+
3️⃣ Choose your preferred style template.<br>
|
387 |
+
4️⃣ Click the <b>Submit</b> button to start customizing.
|
388 |
+
"""
|
389 |
+
|
390 |
+
article = r"""
|
391 |
+
|
392 |
+
If StoryDiffusion is helpful, please help to ⭐ the <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'>Github Repo</a>. Thanks!
|
393 |
+
[![GitHub Stars](https://img.shields.io/github/stars/HVision-NKU/StoryDiffusion?style=social)](https://github.com/HVision-NKU/StoryDiffusion)
|
394 |
+
---
|
395 |
+
📝 **Citation**
|
396 |
+
<br>
|
397 |
+
If our work is useful for your research, please consider citing:
|
398 |
+
|
399 |
+
```bibtex
|
400 |
+
@article{Zhou2024storydiffusion,
|
401 |
+
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
|
402 |
+
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
|
403 |
+
year={2024}
|
404 |
+
}
|
405 |
+
```
|
406 |
+
📋 **License**
|
407 |
+
<br>
|
408 |
+
The Contents you create are under Apache-2.0 LICENSE. The Code are under Attribution-NonCommercial 4.0 International.
|
409 |
+
|
410 |
+
📧 **Contact**
|
411 |
+
<br>
|
412 |
+
If you have any questions, please feel free to reach me out at <b>ypzhousdu@gmail.com</b>.
|
413 |
+
"""
|
414 |
+
version = r"""
|
415 |
+
<h3 align="center">StoryDiffusion Version 0.01 (test version)</h3>
|
416 |
+
|
417 |
+
<h5 >1. Support image ref image. (Cartoon Ref image is not support now)</h5>
|
418 |
+
<h5 >2. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5>
|
419 |
+
<h5 >3. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling.")</h5>
|
420 |
+
<h5 align="center">Tips: </h4>
|
421 |
+
"""
|
422 |
+
#################################################
|
423 |
+
global attn_count, total_count, id_length, total_length,cur_step, cur_model_type
|
424 |
+
global write
|
425 |
+
global sa32, sa64
|
426 |
+
global height,width
|
427 |
+
attn_count = 0
|
428 |
+
total_count = 0
|
429 |
+
cur_step = 0
|
430 |
+
id_length = 4
|
431 |
+
total_length = 5
|
432 |
+
cur_model_type = ""
|
433 |
+
device="cuda"
|
434 |
+
global attn_procs,unet
|
435 |
+
attn_procs = {}
|
436 |
+
###
|
437 |
+
write = False
|
438 |
+
###
|
439 |
+
sa32 = 0.5
|
440 |
+
sa64 = 0.5
|
441 |
+
height = 768
|
442 |
+
width = 768
|
443 |
+
###
|
444 |
+
global pipe
|
445 |
+
global sd_model_path
|
446 |
+
pipe = None
|
447 |
+
sd_model_path = models_dict["Unstable"]["path"] #"SG161222/RealVisXL_V4.0"
|
448 |
+
### LOAD Stable Diffusion Pipeline
|
449 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors = False)
|
450 |
+
pipe = pipe.to(device)
|
451 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
452 |
+
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
453 |
+
pipe.scheduler.set_timesteps(50)
|
454 |
+
pipe.enable_vae_slicing()
|
455 |
+
pipe.enable_model_cpu_offload()
|
456 |
+
unet = pipe.unet
|
457 |
+
cur_model_type = "Unstable"+"-"+"original"
|
458 |
+
### Insert PairedAttention
|
459 |
+
for name in unet.attn_processors.keys():
|
460 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
461 |
+
if name.startswith("mid_block"):
|
462 |
+
hidden_size = unet.config.block_out_channels[-1]
|
463 |
+
elif name.startswith("up_blocks"):
|
464 |
+
block_id = int(name[len("up_blocks.")])
|
465 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
466 |
+
elif name.startswith("down_blocks"):
|
467 |
+
block_id = int(name[len("down_blocks.")])
|
468 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
469 |
+
if cross_attention_dim is None and (name.startswith("up_blocks") ) :
|
470 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
|
471 |
+
total_count +=1
|
472 |
+
else:
|
473 |
+
attn_procs[name] = AttnProcessor()
|
474 |
+
print("successsfully load paired self-attention")
|
475 |
+
print(f"number of the processor : {total_count}")
|
476 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
477 |
+
global mask1024,mask4096
|
478 |
+
mask1024, mask4096 = cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device=device,dtype= torch.float16)
|
479 |
+
|
480 |
+
######### Gradio Fuction #############
|
481 |
+
|
482 |
+
def swap_to_gallery(images):
|
483 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
484 |
+
|
485 |
+
def upload_example_to_gallery(images, prompt, style, negative_prompt):
|
486 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
487 |
+
|
488 |
+
def remove_back_to_files():
|
489 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
490 |
+
|
491 |
+
def remove_tips():
|
492 |
+
return gr.update(visible=False)
|
493 |
+
|
494 |
+
def apply_style_positive(style_name: str, positive: str):
|
495 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
496 |
+
return p.replace("{prompt}", positive)
|
497 |
+
|
498 |
+
def apply_style(style_name: str, positives: list, negative: str = ""):
|
499 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
500 |
+
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
|
501 |
+
|
502 |
+
def change_visiale_by_model_type(_model_type):
|
503 |
+
if _model_type == "Only Using Textual Description":
|
504 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
505 |
+
elif _model_type == "Using Ref Images":
|
506 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
507 |
+
else:
|
508 |
+
raise ValueError("Invalid model type",_model_type)
|
509 |
+
|
510 |
+
|
511 |
+
######### Image Generation ##############
|
512 |
+
def process_generation(_sd_type,_model_type,_upload_images, _num_steps,style_name, _Ip_Adapter_Strength ,_style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt,prompt_array,G_height,G_width,_comic_type, font_choice): # Corrected font_choice usage
|
513 |
+
_model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
|
514 |
+
if _model_type == "Photomaker" and "img" not in general_prompt:
|
515 |
+
raise gr.Error("Please add the triger word \" img \" behind the class word you want to customize, such as: man img or woman img")
|
516 |
+
if _upload_images is None and _model_type != "original":
|
517 |
+
raise gr.Error(f"Cannot find any input face image!")
|
518 |
+
global sa32, sa64,id_length,total_length,attn_procs,unet,cur_model_type
|
519 |
+
global write
|
520 |
+
global cur_step,attn_count
|
521 |
+
global height,width
|
522 |
+
height = G_height
|
523 |
+
width = G_width
|
524 |
+
global pipe
|
525 |
+
global sd_model_path,models_dict
|
526 |
+
sd_model_path = models_dict[_sd_type]
|
527 |
+
use_safe_tensor = True
|
528 |
+
for attn_processor in pipe.unet.attn_processors.values():
|
529 |
+
if isinstance(attn_processor, SpatialAttnProcessor2_0):
|
530 |
+
for values in attn_processor.id_bank.values():
|
531 |
+
del values
|
532 |
+
attn_processor.id_bank = {}
|
533 |
+
attn_processor.id_length = id_length
|
534 |
+
attn_processor.total_length = id_length + 1
|
535 |
+
gc.collect()
|
536 |
+
if cur_model_type != _sd_type+"-"+_model_type:
|
537 |
+
# apply the style template
|
538 |
+
##### load pipe
|
539 |
+
del pipe
|
540 |
+
gc.collect()
|
541 |
+
torch.cuda.empty_cache()
|
542 |
+
model_info = models_dict[_sd_type]
|
543 |
+
model_info["model_type"] = _model_type
|
544 |
+
pipe = load_models(model_info,device=device,photomaker_path=photomaker_path)
|
545 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
546 |
+
##### ########################
|
547 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
548 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
549 |
+
cur_model_type = _sd_type+"-"+_model_type
|
550 |
+
pipe.enable_vae_slicing()
|
551 |
+
pipe.enable_model_cpu_offload()
|
552 |
+
else:
|
553 |
+
unet = pipe.unet
|
554 |
+
# unet.set_attn_processor(copy.deepcopy(attn_procs))
|
555 |
+
if _model_type != "original":
|
556 |
+
input_id_images = []
|
557 |
+
for img in _upload_images:
|
558 |
+
print(img)
|
559 |
+
input_id_images.append(load_image(img))
|
560 |
+
prompts = prompt_array.splitlines()
|
561 |
+
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
|
562 |
+
if start_merge_step > 30:
|
563 |
+
start_merge_step = 30
|
564 |
+
print(f"start_merge_step:{start_merge_step}")
|
565 |
+
generator = torch.Generator(device="cuda").manual_seed(seed_)
|
566 |
+
sa32, sa64 = sa32_, sa64_
|
567 |
+
id_length = id_length_
|
568 |
+
clipped_prompts = prompts[:]
|
569 |
+
nc_indexs = []
|
570 |
+
for ind,prompt in enumerate(clipped_prompts):
|
571 |
+
if "[NC]" in prompt:
|
572 |
+
nc_indexs.append(ind)
|
573 |
+
if ind < id_length:
|
574 |
+
raise gr.Error(f"The first {id_length} row is id prompts, cannot use [NC]!")
|
575 |
+
prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace("[NC]","") for prompt in clipped_prompts]
|
576 |
+
prompts = [prompt.rpartition('#')[0] if "#" in prompt else prompt for prompt in prompts]
|
577 |
+
print(prompts)
|
578 |
+
id_prompts = prompts[:id_length]
|
579 |
+
real_prompts = prompts[id_length:]
|
580 |
+
torch.cuda.empty_cache()
|
581 |
+
write = True
|
582 |
+
cur_step = 0
|
583 |
+
|
584 |
+
attn_count = 0
|
585 |
+
id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)
|
586 |
+
setup_seed(seed_)
|
587 |
+
total_results = []
|
588 |
+
if _model_type == "original":
|
589 |
+
id_images = pipe(id_prompts, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
590 |
+
elif _model_type == "Photomaker":
|
591 |
+
id_images = pipe(id_prompts,input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
592 |
+
else:
|
593 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
594 |
+
total_results = id_images + total_results
|
595 |
+
yield total_results
|
596 |
+
real_images = []
|
597 |
+
write = False
|
598 |
+
for ind,real_prompt in enumerate(real_prompts):
|
599 |
+
setup_seed(seed_)
|
600 |
+
cur_step = 0
|
601 |
+
real_prompt = apply_style_positive(style_name, real_prompt)
|
602 |
+
if _model_type == "original":
|
603 |
+
real_images.append(pipe(real_prompt, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])
|
604 |
+
elif _model_type == "Photomaker":
|
605 |
+
real_images.append(pipe(real_prompt, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator,nc_flag = True if ind+id_length in nc_indexs else False).images[0])
|
606 |
+
else:
|
607 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
608 |
+
total_results = [real_images[-1]] + total_results
|
609 |
+
yield total_results
|
610 |
+
if _comic_type != "No typesetting (default)":
|
611 |
+
captions= prompt_array.splitlines()
|
612 |
+
captions = [caption.replace("[NC]","") for caption in captions]
|
613 |
+
captions = [caption.split('#')[-1] if "#" in caption else caption for caption in captions]
|
614 |
+
from PIL import ImageFont
|
615 |
+
|
616 |
+
font_path = os.path.join("fonts", font_choice)
|
617 |
+
print(f"Attempting to load font from path: {font_path}")
|
618 |
+
font = ImageFont.truetype(font_path, int(45))
|
619 |
+
total_results = get_comic(id_images + real_images, _comic_type, captions=captions, font=font) + total_results
|
620 |
+
yield total_results
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
def array2string(arr):
|
625 |
+
stringtmp = ""
|
626 |
+
for i,part in enumerate(arr):
|
627 |
+
if i != len(arr)-1:
|
628 |
+
stringtmp += part +"\n"
|
629 |
+
else:
|
630 |
+
stringtmp += part
|
631 |
+
|
632 |
+
return stringtmp
|
633 |
+
|
634 |
+
|
635 |
+
#################################################
|
636 |
+
#################################################
|
637 |
+
### define the interface
|
638 |
+
with gr.Blocks(css=css) as demo:
|
639 |
+
binary_matrixes = gr.State([])
|
640 |
+
color_layout = gr.State([])
|
641 |
+
|
642 |
+
# gr.Markdown(logo)
|
643 |
+
gr.Markdown(title)
|
644 |
+
gr.Markdown(description)
|
645 |
+
|
646 |
+
with gr.Row():
|
647 |
+
with gr.Group(elem_id="main-image"):
|
648 |
+
|
649 |
+
prompts = []
|
650 |
+
colors = []
|
651 |
+
|
652 |
+
with gr.Column(visible=True) as gen_prompt_vis:
|
653 |
+
sd_type = gr.Dropdown(choices=list(models_dict.keys()), value = "Unstable",label="sd_type", info="Select pretrained model")
|
654 |
+
model_type = gr.Radio(["Only Using Textual Description", "Using Ref Images"], label="model_type", value = "Only Using Textual Description", info="Control type of the Character")
|
655 |
+
with gr.Group(visible=False) as control_image_input:
|
656 |
+
files = gr.Files(
|
657 |
+
label="Drag (Select) 1 or more photos of your face",
|
658 |
+
file_types=["image"],
|
659 |
+
)
|
660 |
+
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
|
661 |
+
with gr.Column(visible=False) as clear_button:
|
662 |
+
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
663 |
+
general_prompt = gr.Textbox(value='', label="(1) Textual Description for Character", interactive=True)
|
664 |
+
negative_prompt = gr.Textbox(value='', label="(2) Negative_prompt", interactive=True)
|
665 |
+
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
666 |
+
prompt_array = gr.Textbox(lines = 3,value='', label="(3) Comic Description (each line corresponds to a frame).", interactive=True)
|
667 |
+
with gr.Accordion("(4) Tune the hyperparameters", open=True):
|
668 |
+
font_choice = gr.Dropdown(label="Select Font", choices=[f for f in os.listdir("./fonts") if f.endswith('.ttf')], value="Inkfree.ttf", info="Select font for the final slide.", interactive=True)
|
669 |
+
sa32_ = gr.Slider(label=" (The degree of Paired Attention at 32 x 32 self-attention layers) ", minimum=0, maximum=1., value=0.5, step=0.1)
|
670 |
+
sa64_ = gr.Slider(label=" (The degree of Paired Attention at 64 x 64 self-attention layers) ", minimum=0, maximum=1., value=0.5, step=0.1)
|
671 |
+
id_length_ = gr.Slider(label= "Number of id images in total images" , minimum=2, maximum=4, value=2, step=1)
|
672 |
+
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1)
|
673 |
+
num_steps = gr.Slider(
|
674 |
+
label="Number of sample steps",
|
675 |
+
minimum=20,
|
676 |
+
maximum=100,
|
677 |
+
step=1,
|
678 |
+
value=50,
|
679 |
+
)
|
680 |
+
G_height = gr.Slider(
|
681 |
+
label="height",
|
682 |
+
minimum=256,
|
683 |
+
maximum=1024,
|
684 |
+
step=32,
|
685 |
+
value=768,
|
686 |
+
)
|
687 |
+
G_width = gr.Slider(
|
688 |
+
label="width",
|
689 |
+
minimum=256,
|
690 |
+
maximum=1024,
|
691 |
+
step=32,
|
692 |
+
value=768,
|
693 |
+
)
|
694 |
+
comic_type = gr.Radio(["No typesetting (default)", "Four Pannel", "Classic Comic Style"], value = "Classic Comic Style", label="Typesetting Style", info="Select the typesetting style ")
|
695 |
+
guidance_scale = gr.Slider(
|
696 |
+
label="Guidance scale",
|
697 |
+
minimum=0.1,
|
698 |
+
maximum=10.0,
|
699 |
+
step=0.1,
|
700 |
+
value=5,
|
701 |
+
)
|
702 |
+
style_strength_ratio = gr.Slider(
|
703 |
+
label="Style strength of Ref Image (%)",
|
704 |
+
minimum=15,
|
705 |
+
maximum=50,
|
706 |
+
step=1,
|
707 |
+
value=20,
|
708 |
+
visible=False
|
709 |
+
)
|
710 |
+
Ip_Adapter_Strength = gr.Slider(
|
711 |
+
label="Ip_Adapter_Strength",
|
712 |
+
minimum=0,
|
713 |
+
maximum=1,
|
714 |
+
step=0.1,
|
715 |
+
value=0.5,
|
716 |
+
visible=False
|
717 |
+
)
|
718 |
+
final_run_btn = gr.Button("Generate ! 😺")
|
719 |
+
|
720 |
+
|
721 |
+
with gr.Column():
|
722 |
+
out_image = gr.Gallery(label="Result", columns=2, height='auto')
|
723 |
+
generated_information = gr.Markdown(label="Generation Details", value="",visible=False)
|
724 |
+
gr.Markdown(version)
|
725 |
+
model_type.change(fn = change_visiale_by_model_type , inputs = model_type, outputs=[control_image_input,style_strength_ratio,Ip_Adapter_Strength])
|
726 |
+
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
|
727 |
+
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
|
728 |
+
|
729 |
+
final_run_btn.click(fn=set_text_unfinished, outputs=generated_information
|
730 |
+
).then(process_generation, inputs=[sd_type,model_type,files, num_steps,style, Ip_Adapter_Strength,style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,G_height,G_width,comic_type, font_choice], outputs=out_image
|
731 |
+
).then(fn=set_text_finished,outputs=generated_information)
|
732 |
+
|
733 |
+
|
734 |
+
gr.Examples(
|
735 |
+
examples=[
|
736 |
+
[0,0.5,0.5,2,"a man, wearing black suit",
|
737 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
738 |
+
array2string(["at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
|
739 |
+
"on the road, near the forest",
|
740 |
+
"[NC] The car on the road, near the forest #He drives to the forest in search of treasure.",
|
741 |
+
"[NC]A tiger appeared in the forest, at night ",
|
742 |
+
"very frightened, open mouth, in the forest, at night",
|
743 |
+
"running very fast, in the forest, at night",
|
744 |
+
"[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!",
|
745 |
+
"in the house filled with treasure, laughing, at night #He is overjoyed inside the house."
|
746 |
+
]),
|
747 |
+
"Comic book","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
748 |
+
],
|
749 |
+
[0,0.5,0.5,2,"a man, wearing black suit",
|
750 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
751 |
+
array2string(["at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
|
752 |
+
"on the road, near the forest",
|
753 |
+
"[NC] The car on the road, near the forest #He drives to the forest in search of treasure.",
|
754 |
+
"[NC]A tiger appeared in the forest, at night ",
|
755 |
+
"very frightened, open mouth, in the forest, at night",
|
756 |
+
"running very fast, in the forest, at night",
|
757 |
+
"[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!",
|
758 |
+
"in the house filled with treasure, laughing, at night #He is overjoyed inside the house."
|
759 |
+
]),
|
760 |
+
"Comic book","Using Ref Images",get_image_path_list('./examples/Robert'),1024,1024
|
761 |
+
],
|
762 |
+
[1,0.5,0.5,3,"a woman img, wearing a white T-shirt, blue loose hair",
|
763 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
764 |
+
array2string(["wake up in the bed",
|
765 |
+
"have breakfast",
|
766 |
+
"is on the road, go to company",
|
767 |
+
"work in the company",
|
768 |
+
"Take a walk next to the company at noon",
|
769 |
+
"lying in bed at night"]),
|
770 |
+
"Japanese Anime", "Using Ref Images",get_image_path_list('./examples/taylor'),768,768
|
771 |
+
],
|
772 |
+
[0,0.5,0.5,3,"a man, wearing black jacket",
|
773 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
774 |
+
array2string(["wake up in the bed",
|
775 |
+
"have breakfast",
|
776 |
+
"is on the road, go to the company, close look",
|
777 |
+
"work in the company",
|
778 |
+
"laughing happily",
|
779 |
+
"lying in bed at night"
|
780 |
+
]),
|
781 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
782 |
+
],
|
783 |
+
[0,0.3,0.5,3,"a girl, wearing white shirt, black skirt, black tie, yellow hair",
|
784 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
785 |
+
array2string([
|
786 |
+
"at home #at home, began to go to drawing",
|
787 |
+
"sitting alone on a park bench.",
|
788 |
+
"reading a book on a park bench.",
|
789 |
+
"[NC]A squirrel approaches, peeking over the bench. ",
|
790 |
+
"look around in the park. # She looks around and enjoys the beauty of nature.",
|
791 |
+
"[NC]leaf falls from the tree, landing on the sketchbook.",
|
792 |
+
"picks up the leaf, examining its details closely.",
|
793 |
+
"[NC]The brown squirrel appear.",
|
794 |
+
"is very happy # She is very happy to see the squirrel again",
|
795 |
+
"[NC]The brown squirrel takes the cracker and scampers up a tree. # She gives the squirrel cracker"]),
|
796 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
797 |
+
]
|
798 |
+
],
|
799 |
+
inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,style,model_type,files,G_height,G_width],
|
800 |
+
# outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
|
801 |
+
# run_on_click=True,
|
802 |
+
label='😺 Examples 😺',
|
803 |
+
)
|
804 |
+
gr.Markdown(article)
|
805 |
+
|
806 |
+
|
807 |
+
demo.launch(server_name="0.0.0.0", share = False)
|
gradio_app_sdxl_specific_id_mps.py
ADDED
@@ -0,0 +1,767 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from email.policy import default
|
2 |
+
from this import d
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import gc
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
import requests
|
9 |
+
import random
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import pickle
|
13 |
+
from PIL import Image
|
14 |
+
from tqdm.auto import tqdm
|
15 |
+
from datetime import datetime
|
16 |
+
from utils.gradio_utils import is_torch2_available
|
17 |
+
if is_torch2_available():
|
18 |
+
from utils.gradio_utils import \
|
19 |
+
AttnProcessor2_0 as AttnProcessor
|
20 |
+
else:
|
21 |
+
from utils.gradio_utils import AttnProcessor
|
22 |
+
|
23 |
+
import diffusers
|
24 |
+
from diffusers import StableDiffusionXLPipeline
|
25 |
+
from utils import PhotoMakerStableDiffusionXLPipeline
|
26 |
+
from diffusers import DDIMScheduler
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from utils.gradio_utils import cal_attn_mask_xl
|
29 |
+
import copy
|
30 |
+
import os
|
31 |
+
from diffusers.utils import load_image
|
32 |
+
from utils.utils import get_comic
|
33 |
+
from utils.style_template import styles
|
34 |
+
import torch.nn.functional as F
|
35 |
+
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder"
|
36 |
+
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin"
|
37 |
+
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
|
38 |
+
STYLE_NAMES = list(styles.keys())
|
39 |
+
DEFAULT_STYLE_NAME = "Japanese Anime"
|
40 |
+
global models_dict
|
41 |
+
use_va = False
|
42 |
+
models_dict = {
|
43 |
+
# "Juggernaut": "RunDiffusion/Juggernaut-XL-v8",
|
44 |
+
"RealVision": "SG161222/RealVisXL_V4.0" ,
|
45 |
+
"SDXL": "stabilityai/stable-diffusion-xl-base-1.0" ,
|
46 |
+
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
|
47 |
+
}
|
48 |
+
photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
|
49 |
+
MAX_SEED = np.iinfo(np.int32).max
|
50 |
+
def setup_seed(seed):
|
51 |
+
torch.manual_seed(seed)
|
52 |
+
#torch.cuda.manual_seed_all(seed)
|
53 |
+
np.random.seed(seed)
|
54 |
+
random.seed(seed)
|
55 |
+
torch.backends.cudnn.deterministic = True
|
56 |
+
def set_text_unfinished():
|
57 |
+
return gr.update(visible=True, value="<h3>(Not Finished) Generating ··· The intermediate results will be shown.</h3>")
|
58 |
+
def set_text_finished():
|
59 |
+
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
|
60 |
+
#################################################
|
61 |
+
def get_image_path_list(folder_name):
|
62 |
+
image_basename_list = os.listdir(folder_name)
|
63 |
+
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
|
64 |
+
return image_path_list
|
65 |
+
|
66 |
+
#################################################
|
67 |
+
class SpatialAttnProcessor2_0(torch.nn.Module):
|
68 |
+
r"""
|
69 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
70 |
+
Args:
|
71 |
+
hidden_size (`int`):
|
72 |
+
The hidden size of the attention layer.
|
73 |
+
cross_attention_dim (`int`):
|
74 |
+
The number of channels in the `encoder_hidden_states`.
|
75 |
+
text_context_len (`int`, defaults to 77):
|
76 |
+
The context length of the text features.
|
77 |
+
scale (`float`, defaults to 1.0):
|
78 |
+
the weight scale of image prompt.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(self, hidden_size=None, cross_attention_dim=None, id_length=4, device="mps", dtype=torch.float32):
|
82 |
+
super().__init__()
|
83 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
84 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
85 |
+
self.device = device
|
86 |
+
self.dtype = dtype
|
87 |
+
self.hidden_size = hidden_size
|
88 |
+
self.cross_attention_dim = cross_attention_dim
|
89 |
+
self.total_length = id_length + 1
|
90 |
+
self.id_length = id_length
|
91 |
+
self.id_bank = {}
|
92 |
+
|
93 |
+
def __call__(
|
94 |
+
self,
|
95 |
+
attn,
|
96 |
+
hidden_states,
|
97 |
+
encoder_hidden_states=None,
|
98 |
+
attention_mask=None,
|
99 |
+
temb=None):
|
100 |
+
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
|
101 |
+
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
|
102 |
+
# 生成一个0到1之间的随机数
|
103 |
+
global total_count,attn_count,cur_step,mask1024,mask4096
|
104 |
+
global sa32, sa64
|
105 |
+
global write
|
106 |
+
global height,width
|
107 |
+
if write:
|
108 |
+
# print(f"white:{cur_step}")
|
109 |
+
self.id_bank[cur_step] = [hidden_states[:self.id_length].clone(), hidden_states[self.id_length:].clone()]
|
110 |
+
else:
|
111 |
+
encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),hidden_states[:1],self.id_bank[cur_step][1].to(self.device),hidden_states[1:]))
|
112 |
+
# 判断随机数是否大于0.5
|
113 |
+
if cur_step <1:
|
114 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
115 |
+
else: # 256 1024 4096
|
116 |
+
random_number = random.random()
|
117 |
+
if cur_step <20:
|
118 |
+
rand_num = 0.3
|
119 |
+
else:
|
120 |
+
rand_num = 0.1
|
121 |
+
# print(f"hidden state shape {hidden_states.shape[1]}")
|
122 |
+
if random_number > rand_num:
|
123 |
+
# print("mask shape",mask1024.shape,mask4096.shape)
|
124 |
+
if not write:
|
125 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
126 |
+
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
|
127 |
+
else:
|
128 |
+
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
|
129 |
+
else:
|
130 |
+
# print(self.total_length,self.id_length,hidden_states.shape,(height//32) * (width//32))
|
131 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
132 |
+
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,:mask1024.shape[0] // self.total_length * self.id_length]
|
133 |
+
else:
|
134 |
+
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length,:mask4096.shape[0] // self.total_length * self.id_length]
|
135 |
+
# print(attention_mask.shape)
|
136 |
+
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
|
137 |
+
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
|
138 |
+
else:
|
139 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
140 |
+
attn_count +=1
|
141 |
+
if attn_count == total_count:
|
142 |
+
attn_count = 0
|
143 |
+
cur_step += 1
|
144 |
+
mask1024,mask4096 = cal_attn_mask_xl(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype)
|
145 |
+
|
146 |
+
return hidden_states
|
147 |
+
def __call1__(
|
148 |
+
self,
|
149 |
+
attn,
|
150 |
+
hidden_states,
|
151 |
+
encoder_hidden_states=None,
|
152 |
+
attention_mask=None,
|
153 |
+
temb=None,
|
154 |
+
):
|
155 |
+
# print("hidden state shape",hidden_states.shape,self.id_length)
|
156 |
+
residual = hidden_states
|
157 |
+
# if encoder_hidden_states is not None:
|
158 |
+
# raise Exception("not implement")
|
159 |
+
if attn.spatial_norm is not None:
|
160 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
161 |
+
input_ndim = hidden_states.ndim
|
162 |
+
|
163 |
+
if input_ndim == 4:
|
164 |
+
total_batch_size, channel, height, width = hidden_states.shape
|
165 |
+
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
|
166 |
+
total_batch_size,nums_token,channel = hidden_states.shape
|
167 |
+
img_nums = total_batch_size//2
|
168 |
+
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)
|
169 |
+
|
170 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
171 |
+
|
172 |
+
if attn.group_norm is not None:
|
173 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
174 |
+
|
175 |
+
query = attn.to_q(hidden_states)
|
176 |
+
|
177 |
+
if encoder_hidden_states is None:
|
178 |
+
encoder_hidden_states = hidden_states # B, N, C
|
179 |
+
else:
|
180 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)
|
181 |
+
|
182 |
+
key = attn.to_k(encoder_hidden_states)
|
183 |
+
value = attn.to_v(encoder_hidden_states)
|
184 |
+
|
185 |
+
|
186 |
+
inner_dim = key.shape[-1]
|
187 |
+
head_dim = inner_dim // attn.heads
|
188 |
+
|
189 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
190 |
+
|
191 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
192 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
193 |
+
# print(key.shape,value.shape,query.shape,attention_mask.shape)
|
194 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
195 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
196 |
+
#print(query.shape,key.shape,value.shape,attention_mask.shape)
|
197 |
+
hidden_states = F.scaled_dot_product_attention(
|
198 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
199 |
+
)
|
200 |
+
|
201 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)
|
202 |
+
hidden_states = hidden_states.to(query.dtype)
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
# linear proj
|
207 |
+
hidden_states = attn.to_out[0](hidden_states)
|
208 |
+
# dropout
|
209 |
+
hidden_states = attn.to_out[1](hidden_states)
|
210 |
+
|
211 |
+
# if input_ndim == 4:
|
212 |
+
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
213 |
+
|
214 |
+
# if attn.residual_connection:
|
215 |
+
# tile_hidden_states = tile_hidden_states + residual
|
216 |
+
|
217 |
+
if input_ndim == 4:
|
218 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
|
219 |
+
if attn.residual_connection:
|
220 |
+
hidden_states = hidden_states + residual
|
221 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
222 |
+
# print(hidden_states.shape)
|
223 |
+
return hidden_states
|
224 |
+
def __call2__(
|
225 |
+
self,
|
226 |
+
attn,
|
227 |
+
hidden_states,
|
228 |
+
encoder_hidden_states=None,
|
229 |
+
attention_mask=None,
|
230 |
+
temb=None):
|
231 |
+
residual = hidden_states
|
232 |
+
|
233 |
+
if attn.spatial_norm is not None:
|
234 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
235 |
+
|
236 |
+
input_ndim = hidden_states.ndim
|
237 |
+
|
238 |
+
if input_ndim == 4:
|
239 |
+
batch_size, channel, height, width = hidden_states.shape
|
240 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
241 |
+
|
242 |
+
batch_size, sequence_length, channel = (
|
243 |
+
hidden_states.shape
|
244 |
+
)
|
245 |
+
# print(hidden_states.shape)
|
246 |
+
if attention_mask is not None:
|
247 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
248 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
249 |
+
# (batch, heads, source_length, target_length)
|
250 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
251 |
+
|
252 |
+
if attn.group_norm is not None:
|
253 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
254 |
+
|
255 |
+
query = attn.to_q(hidden_states)
|
256 |
+
|
257 |
+
if encoder_hidden_states is None:
|
258 |
+
encoder_hidden_states = hidden_states # B, N, C
|
259 |
+
else:
|
260 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
|
261 |
+
|
262 |
+
key = attn.to_k(encoder_hidden_states)
|
263 |
+
value = attn.to_v(encoder_hidden_states)
|
264 |
+
|
265 |
+
inner_dim = key.shape[-1]
|
266 |
+
head_dim = inner_dim // attn.heads
|
267 |
+
|
268 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
269 |
+
|
270 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
271 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
272 |
+
|
273 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
274 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
275 |
+
hidden_states = F.scaled_dot_product_attention(
|
276 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
277 |
+
)
|
278 |
+
|
279 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
280 |
+
hidden_states = hidden_states.to(query.dtype)
|
281 |
+
|
282 |
+
# linear proj
|
283 |
+
hidden_states = attn.to_out[0](hidden_states)
|
284 |
+
# dropout
|
285 |
+
hidden_states = attn.to_out[1](hidden_states)
|
286 |
+
|
287 |
+
if input_ndim == 4:
|
288 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
289 |
+
|
290 |
+
if attn.residual_connection:
|
291 |
+
hidden_states = hidden_states + residual
|
292 |
+
|
293 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
294 |
+
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
def set_attention_processor(unet,id_length,is_ipadapter = False):
|
298 |
+
global attn_procs
|
299 |
+
attn_procs = {}
|
300 |
+
for name in unet.attn_processors.keys():
|
301 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
302 |
+
if name.startswith("mid_block"):
|
303 |
+
hidden_size = unet.config.block_out_channels[-1]
|
304 |
+
elif name.startswith("up_blocks"):
|
305 |
+
block_id = int(name[len("up_blocks.")])
|
306 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
307 |
+
elif name.startswith("down_blocks"):
|
308 |
+
block_id = int(name[len("down_blocks.")])
|
309 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
310 |
+
if cross_attention_dim is None:
|
311 |
+
if name.startswith("up_blocks") :
|
312 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
|
313 |
+
else:
|
314 |
+
attn_procs[name] = AttnProcessor()
|
315 |
+
else:
|
316 |
+
if is_ipadapter:
|
317 |
+
attn_procs[name] = IPAttnProcessor2_0(
|
318 |
+
hidden_size=hidden_size,
|
319 |
+
cross_attention_dim=cross_attention_dim,
|
320 |
+
scale=1,
|
321 |
+
num_tokens=4,
|
322 |
+
).to(unet.device, dtype=torch.float16)
|
323 |
+
else:
|
324 |
+
attn_procs[name] = AttnProcessor()
|
325 |
+
|
326 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
327 |
+
#################################################
|
328 |
+
#################################################
|
329 |
+
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
|
330 |
+
load_js = """
|
331 |
+
async () => {
|
332 |
+
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
|
333 |
+
fetch(url)
|
334 |
+
.then(res => res.text())
|
335 |
+
.then(text => {
|
336 |
+
const script = document.createElement('script');
|
337 |
+
script.type = "module"
|
338 |
+
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
|
339 |
+
document.head.appendChild(script);
|
340 |
+
});
|
341 |
+
}
|
342 |
+
"""
|
343 |
+
|
344 |
+
get_js_colors = """
|
345 |
+
async (canvasData) => {
|
346 |
+
const canvasEl = document.getElementById("canvas-root");
|
347 |
+
return [canvasEl._data]
|
348 |
+
}
|
349 |
+
"""
|
350 |
+
|
351 |
+
css = '''
|
352 |
+
#color-bg{display:flex;justify-content: center;align-items: center;}
|
353 |
+
.color-bg-item{width: 100%; height: 32px}
|
354 |
+
#main_button{width:100%}
|
355 |
+
<style>
|
356 |
+
'''
|
357 |
+
|
358 |
+
|
359 |
+
#################################################
|
360 |
+
title = r"""
|
361 |
+
<h1 align="center">StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</h1>
|
362 |
+
"""
|
363 |
+
|
364 |
+
description = r"""
|
365 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'><b>StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</b></a>.<br>
|
366 |
+
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
|
367 |
+
1️⃣ Enter a Textual Description for Character, if you add the Ref-Image, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
|
368 |
+
2️⃣ Enter the prompt array, each line corrsponds to one generated image.<br>
|
369 |
+
3️⃣ Choose your preferred style template.<br>
|
370 |
+
4️⃣ Click the <b>Submit</b> button to start customizing.
|
371 |
+
"""
|
372 |
+
|
373 |
+
article = r"""
|
374 |
+
|
375 |
+
If StoryDiffusion is helpful, please help to ⭐ the <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'>Github Repo</a>. Thanks!
|
376 |
+
[![GitHub Stars](https://img.shields.io/github/stars/HVision-NKU/StoryDiffusion?style=social)](https://github.com/HVision-NKU/StoryDiffusion)
|
377 |
+
---
|
378 |
+
📝 **Citation**
|
379 |
+
<br>
|
380 |
+
If our work is useful for your research, please consider citing:
|
381 |
+
|
382 |
+
```bibtex
|
383 |
+
@article{Zhou2024storydiffusion,
|
384 |
+
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
|
385 |
+
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
|
386 |
+
year={2024}
|
387 |
+
}
|
388 |
+
```
|
389 |
+
📋 **License**
|
390 |
+
<br>
|
391 |
+
The Contents you create are under Apache-2.0 LICENSE. The Code are under Attribution-NonCommercial 4.0 International.
|
392 |
+
|
393 |
+
📧 **Contact**
|
394 |
+
<br>
|
395 |
+
If you have any questions, please feel free to reach me out at <b>ypzhousdu@gmail.com</b>.
|
396 |
+
"""
|
397 |
+
version = r"""
|
398 |
+
<h3 align="center">StoryDiffusion Version 0.01 (test version)</h3>
|
399 |
+
|
400 |
+
<h5 >1. Support image ref image. (Cartoon Ref image is not support now)</h5>
|
401 |
+
<h5 >2. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5>
|
402 |
+
<h5 >3. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling.")</h5>
|
403 |
+
<h5 align="center">Tips: </h4>
|
404 |
+
"""
|
405 |
+
#################################################
|
406 |
+
global attn_count, total_count, id_length, total_length,cur_step, cur_model_type
|
407 |
+
global write
|
408 |
+
global sa32, sa64
|
409 |
+
global height,width
|
410 |
+
attn_count = 0
|
411 |
+
total_count = 0
|
412 |
+
cur_step = 0
|
413 |
+
id_length = 4
|
414 |
+
total_length = 5
|
415 |
+
cur_model_type = ""
|
416 |
+
device="mps"
|
417 |
+
global attn_procs,unet
|
418 |
+
attn_procs = {}
|
419 |
+
###
|
420 |
+
write = False
|
421 |
+
###
|
422 |
+
sa32 = 0.5
|
423 |
+
sa64 = 0.5
|
424 |
+
height = 768
|
425 |
+
width = 768
|
426 |
+
###
|
427 |
+
global pipe
|
428 |
+
global sd_model_path
|
429 |
+
pipe = None
|
430 |
+
sd_model_path = models_dict["RealVision"]#"SG161222/RealVisXL_V4.0"
|
431 |
+
### LOAD Stable Diffusion Pipeline
|
432 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors = True)
|
433 |
+
pipe = pipe.to(device)
|
434 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
435 |
+
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
436 |
+
pipe.scheduler.set_timesteps(50)
|
437 |
+
unet = pipe.unet
|
438 |
+
### Insert PairedAttention
|
439 |
+
for name in unet.attn_processors.keys():
|
440 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
441 |
+
if name.startswith("mid_block"):
|
442 |
+
hidden_size = unet.config.block_out_channels[-1]
|
443 |
+
elif name.startswith("up_blocks"):
|
444 |
+
block_id = int(name[len("up_blocks.")])
|
445 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
446 |
+
elif name.startswith("down_blocks"):
|
447 |
+
block_id = int(name[len("down_blocks.")])
|
448 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
449 |
+
if cross_attention_dim is None and (name.startswith("up_blocks") ) :
|
450 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
|
451 |
+
total_count +=1
|
452 |
+
else:
|
453 |
+
attn_procs[name] = AttnProcessor()
|
454 |
+
print("successsfully load paired self-attention")
|
455 |
+
print(f"number of the processor : {total_count}")
|
456 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
457 |
+
global mask1024,mask4096
|
458 |
+
mask1024, mask4096 = cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device=device,dtype= torch.float16)
|
459 |
+
|
460 |
+
######### Gradio Fuction #############
|
461 |
+
|
462 |
+
def swap_to_gallery(images):
|
463 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
464 |
+
|
465 |
+
def upload_example_to_gallery(images, prompt, style, negative_prompt):
|
466 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
467 |
+
|
468 |
+
def remove_back_to_files():
|
469 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
470 |
+
|
471 |
+
def remove_tips():
|
472 |
+
return gr.update(visible=False)
|
473 |
+
|
474 |
+
def apply_style_positive(style_name: str, positive: str):
|
475 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
476 |
+
return p.replace("{prompt}", positive)
|
477 |
+
|
478 |
+
def apply_style(style_name: str, positives: list, negative: str = ""):
|
479 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
480 |
+
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
|
481 |
+
|
482 |
+
def change_visiale_by_model_type(_model_type):
|
483 |
+
if _model_type == "Only Using Textual Description":
|
484 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
485 |
+
elif _model_type == "Using Ref Images":
|
486 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
487 |
+
else:
|
488 |
+
raise ValueError("Invalid model type",_model_type)
|
489 |
+
|
490 |
+
|
491 |
+
######### Image Generation ##############
|
492 |
+
def process_generation(_sd_type,_model_type,_upload_images, _num_steps,style_name, _Ip_Adapter_Strength ,_style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt,prompt_array,G_height,G_width,_comic_type):
|
493 |
+
_model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
|
494 |
+
if _model_type == "Photomaker" and "img" not in general_prompt:
|
495 |
+
raise gr.Error("Please add the triger word \" img \" behind the class word you want to customize, such as: man img or woman img")
|
496 |
+
if _upload_images is None and _model_type != "original":
|
497 |
+
raise gr.Error(f"Cannot find any input face image!")
|
498 |
+
global sa32, sa64,id_length,total_length,attn_procs,unet,cur_model_type
|
499 |
+
global write
|
500 |
+
global cur_step,attn_count
|
501 |
+
global height,width
|
502 |
+
height = G_height
|
503 |
+
width = G_width
|
504 |
+
global pipe
|
505 |
+
global sd_model_path,models_dict
|
506 |
+
sd_model_path = models_dict[_sd_type]
|
507 |
+
use_safe_tensor = True
|
508 |
+
if cur_model_type != _sd_type+"-"+_model_type+""+str(id_length_):
|
509 |
+
if _sd_type == "Unstable":
|
510 |
+
use_safe_tensor = False
|
511 |
+
# apply the style template
|
512 |
+
##### load pipe
|
513 |
+
|
514 |
+
if _model_type == "original":
|
515 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors=use_safe_tensor)
|
516 |
+
pipe = pipe.to(device)
|
517 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
518 |
+
elif _model_type == "Photomaker":
|
519 |
+
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
520 |
+
sd_model_path, torch_dtype=torch.float16, use_safetensors=use_safe_tensor)
|
521 |
+
pipe = pipe.to(device)
|
522 |
+
pipe.load_photomaker_adapter(
|
523 |
+
os.path.dirname(photomaker_path),
|
524 |
+
subfolder="",
|
525 |
+
weight_name=os.path.basename(photomaker_path),
|
526 |
+
trigger_word="img" # define the trigger word
|
527 |
+
)
|
528 |
+
pipe.fuse_lora()
|
529 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
530 |
+
else:
|
531 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
532 |
+
##### ########################
|
533 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
534 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
535 |
+
cur_model_type = _sd_type+"-"+_model_type+""+str(id_length_)
|
536 |
+
else:
|
537 |
+
unet = pipe.unet
|
538 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
539 |
+
if _model_type != "original":
|
540 |
+
input_id_images = []
|
541 |
+
for img in _upload_images:
|
542 |
+
print(img)
|
543 |
+
input_id_images.append(load_image(img))
|
544 |
+
prompts = prompt_array.splitlines()
|
545 |
+
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
|
546 |
+
if start_merge_step > 30:
|
547 |
+
start_merge_step = 30
|
548 |
+
print(f"start_merge_step:{start_merge_step}")
|
549 |
+
generator = torch.Generator(device="mps").manual_seed(seed_)
|
550 |
+
sa32, sa64 = sa32_, sa64_
|
551 |
+
id_length = id_length_
|
552 |
+
clipped_prompts = prompts[:]
|
553 |
+
prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace("[NC]","") for prompt in clipped_prompts]
|
554 |
+
prompts = [prompt.rpartition('#')[0] if "#" in prompt else prompt for prompt in prompts]
|
555 |
+
print(prompts)
|
556 |
+
id_prompts = prompts[:id_length]
|
557 |
+
real_prompts = prompts[id_length:]
|
558 |
+
#torch.cuda.empty_cache()
|
559 |
+
write = True
|
560 |
+
cur_step = 0
|
561 |
+
|
562 |
+
attn_count = 0
|
563 |
+
id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)
|
564 |
+
setup_seed(seed_)
|
565 |
+
total_results = []
|
566 |
+
if _model_type == "original":
|
567 |
+
id_images = pipe(id_prompts, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
568 |
+
elif _model_type == "Photomaker":
|
569 |
+
id_images = pipe(id_prompts,input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
570 |
+
else:
|
571 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
572 |
+
total_results = id_images + total_results
|
573 |
+
yield total_results
|
574 |
+
real_images = []
|
575 |
+
write = False
|
576 |
+
for real_prompt in real_prompts:
|
577 |
+
setup_seed(seed_)
|
578 |
+
cur_step = 0
|
579 |
+
real_prompt = apply_style_positive(style_name, real_prompt)
|
580 |
+
if _model_type == "original":
|
581 |
+
real_images.append(pipe(real_prompt, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])
|
582 |
+
elif _model_type == "Photomaker":
|
583 |
+
real_images.append(pipe(real_prompt, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])
|
584 |
+
else:
|
585 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
586 |
+
total_results = [real_images[-1]] + total_results
|
587 |
+
yield total_results
|
588 |
+
if _comic_type != "No typesetting (default)":
|
589 |
+
captions= prompt_array.splitlines()
|
590 |
+
captions = [caption.replace("[NC]","") for caption in captions]
|
591 |
+
captions = [caption.split('#')[-1] if "#" in caption else caption for caption in captions]
|
592 |
+
from PIL import ImageFont
|
593 |
+
total_results = get_comic(id_images + real_images, _comic_type,captions= captions,font=ImageFont.truetype("./fonts/Inkfree.ttf", int(45))) + total_results
|
594 |
+
yield total_results
|
595 |
+
|
596 |
+
|
597 |
+
|
598 |
+
def array2string(arr):
|
599 |
+
stringtmp = ""
|
600 |
+
for i,part in enumerate(arr):
|
601 |
+
if i != len(arr)-1:
|
602 |
+
stringtmp += part +"\n"
|
603 |
+
else:
|
604 |
+
stringtmp += part
|
605 |
+
|
606 |
+
return stringtmp
|
607 |
+
|
608 |
+
|
609 |
+
#################################################
|
610 |
+
#################################################
|
611 |
+
### define the interface
|
612 |
+
with gr.Blocks(css=css) as demo:
|
613 |
+
binary_matrixes = gr.State([])
|
614 |
+
color_layout = gr.State([])
|
615 |
+
|
616 |
+
# gr.Markdown(logo)
|
617 |
+
gr.Markdown(title)
|
618 |
+
gr.Markdown(description)
|
619 |
+
|
620 |
+
with gr.Row():
|
621 |
+
with gr.Group(elem_id="main-image"):
|
622 |
+
|
623 |
+
prompts = []
|
624 |
+
colors = []
|
625 |
+
|
626 |
+
with gr.Column(visible=True) as gen_prompt_vis:
|
627 |
+
sd_type = gr.Dropdown(choices=list(models_dict.keys()), value = "Unstable",label="sd_type", info="Select pretrained model")
|
628 |
+
model_type = gr.Radio(["Only Using Textual Description", "Using Ref Images"], label="model_type", value = "Only Using Textual Description", info="Control type of the Character")
|
629 |
+
with gr.Group(visible=False) as control_image_input:
|
630 |
+
files = gr.Files(
|
631 |
+
label="Drag (Select) 1 or more photos of your face",
|
632 |
+
file_types=["image"],
|
633 |
+
)
|
634 |
+
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
|
635 |
+
with gr.Column(visible=False) as clear_button:
|
636 |
+
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
637 |
+
general_prompt = gr.Textbox(value='', label="(1) Textual Description for Character", interactive=True)
|
638 |
+
negative_prompt = gr.Textbox(value='', label="(2) Negative_prompt", interactive=True)
|
639 |
+
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
640 |
+
prompt_array = gr.Textbox(lines = 3,value='', label="(3) Comic Description (each line corresponds to a frame).", interactive=True)
|
641 |
+
with gr.Accordion("(4) Tune the hyperparameters", open=True):
|
642 |
+
sa32_ = gr.Slider(label=" (The degree of Paired Attention at 32 x 32 self-attention layers) ", minimum=0, maximum=1., value=0.5, step=0.1)
|
643 |
+
sa64_ = gr.Slider(label=" (The degree of Paired Attention at 64 x 64 self-attention layers) ", minimum=0, maximum=1., value=0.5, step=0.1)
|
644 |
+
id_length_ = gr.Slider(label= "Number of id images in total images" , minimum=2, maximum=4, value=2, step=1)
|
645 |
+
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1)
|
646 |
+
num_steps = gr.Slider(
|
647 |
+
label="Number of sample steps",
|
648 |
+
minimum=20,
|
649 |
+
maximum=100,
|
650 |
+
step=1,
|
651 |
+
value=50,
|
652 |
+
)
|
653 |
+
G_height = gr.Slider(
|
654 |
+
label="height",
|
655 |
+
minimum=256,
|
656 |
+
maximum=1024,
|
657 |
+
step=32,
|
658 |
+
value=768,
|
659 |
+
)
|
660 |
+
G_width = gr.Slider(
|
661 |
+
label="width",
|
662 |
+
minimum=256,
|
663 |
+
maximum=1024,
|
664 |
+
step=32,
|
665 |
+
value=768,
|
666 |
+
)
|
667 |
+
comic_type = gr.Radio(["No typesetting (default)", "Four Pannel", "Classic Comic Style"], value = "Classic Comic Style", label="Typesetting Style", info="Select the typesetting style ")
|
668 |
+
guidance_scale = gr.Slider(
|
669 |
+
label="Guidance scale",
|
670 |
+
minimum=0.1,
|
671 |
+
maximum=10.0,
|
672 |
+
step=0.1,
|
673 |
+
value=5,
|
674 |
+
)
|
675 |
+
style_strength_ratio = gr.Slider(
|
676 |
+
label="Style strength of Ref Image (%)",
|
677 |
+
minimum=15,
|
678 |
+
maximum=50,
|
679 |
+
step=1,
|
680 |
+
value=20,
|
681 |
+
visible=False
|
682 |
+
)
|
683 |
+
Ip_Adapter_Strength = gr.Slider(
|
684 |
+
label="Ip_Adapter_Strength",
|
685 |
+
minimum=0,
|
686 |
+
maximum=1,
|
687 |
+
step=0.1,
|
688 |
+
value=0.5,
|
689 |
+
visible=False
|
690 |
+
)
|
691 |
+
final_run_btn = gr.Button("Generate ! 😺")
|
692 |
+
|
693 |
+
|
694 |
+
with gr.Column():
|
695 |
+
out_image = gr.Gallery(label="Result", columns=2, height='auto')
|
696 |
+
generated_information = gr.Markdown(label="Generation Details", value="",visible=False)
|
697 |
+
gr.Markdown(version)
|
698 |
+
model_type.change(fn = change_visiale_by_model_type , inputs = model_type, outputs=[control_image_input,style_strength_ratio,Ip_Adapter_Strength])
|
699 |
+
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
|
700 |
+
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
|
701 |
+
|
702 |
+
final_run_btn.click(fn=set_text_unfinished, outputs = generated_information
|
703 |
+
).then(process_generation, inputs=[sd_type,model_type,files, num_steps,style, Ip_Adapter_Strength,style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,G_height,G_width,comic_type], outputs=out_image
|
704 |
+
).then(fn=set_text_finished,outputs = generated_information)
|
705 |
+
|
706 |
+
|
707 |
+
gr.Examples(
|
708 |
+
examples=[
|
709 |
+
[0,0.5,0.5,2,"a man, wearing black suit",
|
710 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
711 |
+
array2string(["at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
|
712 |
+
"on the road, near the forest",
|
713 |
+
"[NC] The car on the road, near the forest #He drives to the forest in search of treasure.",
|
714 |
+
"[NC]A tiger appeared in the forest, at night ",
|
715 |
+
"very frightened, open mouth, in the forest, at night",
|
716 |
+
"running very fast, in the forest, at night",
|
717 |
+
"[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!",
|
718 |
+
"in the house filled with treasure, laughing, at night #He is overjoyed inside the house."
|
719 |
+
]),
|
720 |
+
"Comic book","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
721 |
+
],
|
722 |
+
[1,0.5,0.5,3,"a woman img, wearing a white T-shirt, blue loose hair",
|
723 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
724 |
+
array2string(["wake up in the bed",
|
725 |
+
"have breakfast",
|
726 |
+
"is on the road, go to company",
|
727 |
+
"work in the company",
|
728 |
+
"Take a walk next to the company at noon",
|
729 |
+
"lying in bed at night"]),
|
730 |
+
"Japanese Anime", "Using Ref Images",get_image_path_list('./examples/taylor'),768,768
|
731 |
+
],
|
732 |
+
[0,0.5,0.5,3,"a man, wearing black jacket",
|
733 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
734 |
+
array2string(["wake up in the bed",
|
735 |
+
"have breakfast",
|
736 |
+
"is on the road, go to the company, close look",
|
737 |
+
"work in the company",
|
738 |
+
"laughing happily",
|
739 |
+
"lying in bed at night"
|
740 |
+
]),
|
741 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
742 |
+
],
|
743 |
+
[0,0.3,0.5,3,"a girl, wearing white shirt, black skirt, black tie, yellow hair",
|
744 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
745 |
+
array2string([
|
746 |
+
"at home #at home, began to go to drawing",
|
747 |
+
"sitting alone on a park bench.",
|
748 |
+
"reading a book on a park bench.",
|
749 |
+
"[NC]A squirrel approaches, peeking over the bench. ",
|
750 |
+
"look around in the park. # She looks around and enjoys the beauty of nature.",
|
751 |
+
"[NC]leaf falls from the tree, landing on the sketchbook.",
|
752 |
+
"picks up the leaf, examining its details closely.",
|
753 |
+
"[NC]The brown squirrel appear.",
|
754 |
+
"is very happy # She is very happy to see the squirrel again",
|
755 |
+
"[NC]The brown squirrel takes the cracker and scampers up a tree. # She gives the squirrel cracker"]),
|
756 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
757 |
+
]
|
758 |
+
],
|
759 |
+
inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,style,model_type,files,G_height,G_width],
|
760 |
+
# outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
|
761 |
+
# run_on_click=True,
|
762 |
+
label='😺 Examples 😺',
|
763 |
+
)
|
764 |
+
gr.Markdown(article)
|
765 |
+
|
766 |
+
|
767 |
+
demo.launch(server_name="0.0.0.0", share = False)
|
gradio_app_sdxl_specific_id_old_version.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from email.policy import default
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import requests
|
7 |
+
import random
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import pickle
|
11 |
+
from PIL import Image
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
from datetime import datetime
|
14 |
+
from utils.gradio_utils import is_torch2_available
|
15 |
+
if is_torch2_available():
|
16 |
+
from utils.gradio_utils import \
|
17 |
+
AttnProcessor2_0 as AttnProcessor
|
18 |
+
else:
|
19 |
+
from utils.gradio_utils import AttnProcessor
|
20 |
+
|
21 |
+
import diffusers
|
22 |
+
from diffusers import StableDiffusionXLPipeline
|
23 |
+
from utils import PhotoMakerStableDiffusionXLPipeline
|
24 |
+
from diffusers import DDIMScheduler
|
25 |
+
import torch.nn.functional as F
|
26 |
+
from utils.gradio_utils import cal_attn_mask_xl
|
27 |
+
import copy
|
28 |
+
import os
|
29 |
+
from diffusers.utils import load_image
|
30 |
+
from utils.utils import get_comic
|
31 |
+
from utils.style_template import styles
|
32 |
+
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder"
|
33 |
+
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin"
|
34 |
+
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
|
35 |
+
STYLE_NAMES = list(styles.keys())
|
36 |
+
DEFAULT_STYLE_NAME = "Japanese Anime"
|
37 |
+
global models_dict
|
38 |
+
models_dict = {
|
39 |
+
# "Juggernaut": "RunDiffusion/Juggernaut-XL-v9",
|
40 |
+
"RealVision": "SG161222/RealVisXL_V4.0" ,
|
41 |
+
"SDXL": "stabilityai/stable-diffusion-xl-base-1.0" ,
|
42 |
+
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
|
43 |
+
}
|
44 |
+
photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
|
45 |
+
MAX_SEED = np.iinfo(np.int32).max
|
46 |
+
def setup_seed(seed):
|
47 |
+
torch.manual_seed(seed)
|
48 |
+
torch.cuda.manual_seed_all(seed)
|
49 |
+
np.random.seed(seed)
|
50 |
+
random.seed(seed)
|
51 |
+
torch.backends.cudnn.deterministic = True
|
52 |
+
def set_text_unfinished():
|
53 |
+
return gr.update(visible=True, value="<h3>(Not Finished) Generating ··· The intermediate results will be shown.</h3>")
|
54 |
+
def set_text_finished():
|
55 |
+
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
|
56 |
+
#################################################
|
57 |
+
def get_image_path_list(folder_name):
|
58 |
+
image_basename_list = os.listdir(folder_name)
|
59 |
+
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
|
60 |
+
return image_path_list
|
61 |
+
|
62 |
+
#################################################
|
63 |
+
class SpatialAttnProcessor2_0(torch.nn.Module):
|
64 |
+
r"""
|
65 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
66 |
+
Args:
|
67 |
+
hidden_size (`int`):
|
68 |
+
The hidden size of the attention layer.
|
69 |
+
cross_attention_dim (`int`):
|
70 |
+
The number of channels in the `encoder_hidden_states`.
|
71 |
+
text_context_len (`int`, defaults to 77):
|
72 |
+
The context length of the text features.
|
73 |
+
scale (`float`, defaults to 1.0):
|
74 |
+
the weight scale of image prompt.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16):
|
78 |
+
super().__init__()
|
79 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
80 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
81 |
+
self.device = device
|
82 |
+
self.dtype = dtype
|
83 |
+
self.hidden_size = hidden_size
|
84 |
+
self.cross_attention_dim = cross_attention_dim
|
85 |
+
self.total_length = id_length + 1
|
86 |
+
self.id_length = id_length
|
87 |
+
self.id_bank = {}
|
88 |
+
|
89 |
+
def __call__(
|
90 |
+
self,
|
91 |
+
attn,
|
92 |
+
hidden_states,
|
93 |
+
encoder_hidden_states=None,
|
94 |
+
attention_mask=None,
|
95 |
+
temb=None):
|
96 |
+
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
|
97 |
+
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
|
98 |
+
# 生成一个0到1之间的随机数
|
99 |
+
global total_count,attn_count,cur_step,mask1024,mask4096
|
100 |
+
global sa32, sa64
|
101 |
+
global write
|
102 |
+
global height,width
|
103 |
+
if write:
|
104 |
+
# print(f"white:{cur_step}")
|
105 |
+
self.id_bank[cur_step] = [hidden_states[:self.id_length].clone(), hidden_states[self.id_length:].clone()]
|
106 |
+
else:
|
107 |
+
encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),hidden_states[:1],self.id_bank[cur_step][1].to(self.device),hidden_states[1:]))
|
108 |
+
# 判断随机数是否大于0.5
|
109 |
+
if cur_step <1:
|
110 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
111 |
+
else: # 256 1024 4096
|
112 |
+
random_number = random.random()
|
113 |
+
if cur_step <20:
|
114 |
+
rand_num = 0.3
|
115 |
+
else:
|
116 |
+
rand_num = 0.1
|
117 |
+
# print(f"hidden state shape {hidden_states.shape[1]}")
|
118 |
+
if random_number > rand_num:
|
119 |
+
# print("mask shape",mask1024.shape,mask4096.shape)
|
120 |
+
if not write:
|
121 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
122 |
+
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
|
123 |
+
else:
|
124 |
+
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
|
125 |
+
else:
|
126 |
+
# print(self.total_length,self.id_length,hidden_states.shape,(height//32) * (width//32))
|
127 |
+
if hidden_states.shape[1] == (height//32) * (width//32):
|
128 |
+
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,:mask1024.shape[0] // self.total_length * self.id_length]
|
129 |
+
else:
|
130 |
+
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length,:mask4096.shape[0] // self.total_length * self.id_length]
|
131 |
+
# print(attention_mask.shape)
|
132 |
+
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
|
133 |
+
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
|
134 |
+
else:
|
135 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
136 |
+
attn_count +=1
|
137 |
+
if attn_count == total_count:
|
138 |
+
attn_count = 0
|
139 |
+
cur_step += 1
|
140 |
+
mask1024,mask4096 = cal_attn_mask_xl(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype)
|
141 |
+
|
142 |
+
return hidden_states
|
143 |
+
def __call1__(
|
144 |
+
self,
|
145 |
+
attn,
|
146 |
+
hidden_states,
|
147 |
+
encoder_hidden_states=None,
|
148 |
+
attention_mask=None,
|
149 |
+
temb=None,
|
150 |
+
):
|
151 |
+
# print("hidden state shape",hidden_states.shape,self.id_length)
|
152 |
+
residual = hidden_states
|
153 |
+
# if encoder_hidden_states is not None:
|
154 |
+
# raise Exception("not implement")
|
155 |
+
if attn.spatial_norm is not None:
|
156 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
157 |
+
input_ndim = hidden_states.ndim
|
158 |
+
|
159 |
+
if input_ndim == 4:
|
160 |
+
total_batch_size, channel, height, width = hidden_states.shape
|
161 |
+
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
|
162 |
+
total_batch_size,nums_token,channel = hidden_states.shape
|
163 |
+
img_nums = total_batch_size//2
|
164 |
+
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)
|
165 |
+
|
166 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
167 |
+
|
168 |
+
if attn.group_norm is not None:
|
169 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
170 |
+
|
171 |
+
query = attn.to_q(hidden_states)
|
172 |
+
|
173 |
+
if encoder_hidden_states is None:
|
174 |
+
encoder_hidden_states = hidden_states # B, N, C
|
175 |
+
else:
|
176 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)
|
177 |
+
|
178 |
+
key = attn.to_k(encoder_hidden_states)
|
179 |
+
value = attn.to_v(encoder_hidden_states)
|
180 |
+
|
181 |
+
|
182 |
+
inner_dim = key.shape[-1]
|
183 |
+
head_dim = inner_dim // attn.heads
|
184 |
+
|
185 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
186 |
+
|
187 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
188 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
189 |
+
# print(key.shape,value.shape,query.shape,attention_mask.shape)
|
190 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
191 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
192 |
+
#print(query.shape,key.shape,value.shape,attention_mask.shape)
|
193 |
+
hidden_states = F.scaled_dot_product_attention(
|
194 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
195 |
+
)
|
196 |
+
|
197 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)
|
198 |
+
hidden_states = hidden_states.to(query.dtype)
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
# linear proj
|
203 |
+
hidden_states = attn.to_out[0](hidden_states)
|
204 |
+
# dropout
|
205 |
+
hidden_states = attn.to_out[1](hidden_states)
|
206 |
+
|
207 |
+
# if input_ndim == 4:
|
208 |
+
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
209 |
+
|
210 |
+
# if attn.residual_connection:
|
211 |
+
# tile_hidden_states = tile_hidden_states + residual
|
212 |
+
|
213 |
+
if input_ndim == 4:
|
214 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
|
215 |
+
if attn.residual_connection:
|
216 |
+
hidden_states = hidden_states + residual
|
217 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
218 |
+
# print(hidden_states.shape)
|
219 |
+
return hidden_states
|
220 |
+
def __call2__(
|
221 |
+
self,
|
222 |
+
attn,
|
223 |
+
hidden_states,
|
224 |
+
encoder_hidden_states=None,
|
225 |
+
attention_mask=None,
|
226 |
+
temb=None):
|
227 |
+
residual = hidden_states
|
228 |
+
|
229 |
+
if attn.spatial_norm is not None:
|
230 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
231 |
+
|
232 |
+
input_ndim = hidden_states.ndim
|
233 |
+
|
234 |
+
if input_ndim == 4:
|
235 |
+
batch_size, channel, height, width = hidden_states.shape
|
236 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
237 |
+
|
238 |
+
batch_size, sequence_length, channel = (
|
239 |
+
hidden_states.shape
|
240 |
+
)
|
241 |
+
# print(hidden_states.shape)
|
242 |
+
if attention_mask is not None:
|
243 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
244 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
245 |
+
# (batch, heads, source_length, target_length)
|
246 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
247 |
+
|
248 |
+
if attn.group_norm is not None:
|
249 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
250 |
+
|
251 |
+
query = attn.to_q(hidden_states)
|
252 |
+
|
253 |
+
if encoder_hidden_states is None:
|
254 |
+
encoder_hidden_states = hidden_states # B, N, C
|
255 |
+
else:
|
256 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
|
257 |
+
|
258 |
+
key = attn.to_k(encoder_hidden_states)
|
259 |
+
value = attn.to_v(encoder_hidden_states)
|
260 |
+
|
261 |
+
inner_dim = key.shape[-1]
|
262 |
+
head_dim = inner_dim // attn.heads
|
263 |
+
|
264 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
265 |
+
|
266 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
267 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
268 |
+
|
269 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
270 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
271 |
+
hidden_states = F.scaled_dot_product_attention(
|
272 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
273 |
+
)
|
274 |
+
|
275 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
276 |
+
hidden_states = hidden_states.to(query.dtype)
|
277 |
+
|
278 |
+
# linear proj
|
279 |
+
hidden_states = attn.to_out[0](hidden_states)
|
280 |
+
# dropout
|
281 |
+
hidden_states = attn.to_out[1](hidden_states)
|
282 |
+
|
283 |
+
if input_ndim == 4:
|
284 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
285 |
+
|
286 |
+
if attn.residual_connection:
|
287 |
+
hidden_states = hidden_states + residual
|
288 |
+
|
289 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
290 |
+
|
291 |
+
return hidden_states
|
292 |
+
|
293 |
+
def set_attention_processor(unet,id_length,is_ipadapter = False):
|
294 |
+
global attn_procs
|
295 |
+
attn_procs = {}
|
296 |
+
for name in unet.attn_processors.keys():
|
297 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
298 |
+
if name.startswith("mid_block"):
|
299 |
+
hidden_size = unet.config.block_out_channels[-1]
|
300 |
+
elif name.startswith("up_blocks"):
|
301 |
+
block_id = int(name[len("up_blocks.")])
|
302 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
303 |
+
elif name.startswith("down_blocks"):
|
304 |
+
block_id = int(name[len("down_blocks.")])
|
305 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
306 |
+
if cross_attention_dim is None:
|
307 |
+
if name.startswith("up_blocks") :
|
308 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
|
309 |
+
else:
|
310 |
+
attn_procs[name] = AttnProcessor()
|
311 |
+
else:
|
312 |
+
if is_ipadapter:
|
313 |
+
attn_procs[name] = IPAttnProcessor2_0(
|
314 |
+
hidden_size=hidden_size,
|
315 |
+
cross_attention_dim=cross_attention_dim,
|
316 |
+
scale=1,
|
317 |
+
num_tokens=4,
|
318 |
+
).to(unet.device, dtype=torch.float16)
|
319 |
+
else:
|
320 |
+
attn_procs[name] = AttnProcessor()
|
321 |
+
|
322 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
323 |
+
#################################################
|
324 |
+
#################################################
|
325 |
+
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
|
326 |
+
load_js = """
|
327 |
+
async () => {
|
328 |
+
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
|
329 |
+
fetch(url)
|
330 |
+
.then(res => res.text())
|
331 |
+
.then(text => {
|
332 |
+
const script = document.createElement('script');
|
333 |
+
script.type = "module"
|
334 |
+
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
|
335 |
+
document.head.appendChild(script);
|
336 |
+
});
|
337 |
+
}
|
338 |
+
"""
|
339 |
+
|
340 |
+
get_js_colors = """
|
341 |
+
async (canvasData) => {
|
342 |
+
const canvasEl = document.getElementById("canvas-root");
|
343 |
+
return [canvasEl._data]
|
344 |
+
}
|
345 |
+
"""
|
346 |
+
|
347 |
+
css = '''
|
348 |
+
#color-bg{display:flex;justify-content: center;align-items: center;}
|
349 |
+
.color-bg-item{width: 100%; height: 32px}
|
350 |
+
#main_button{width:100%}
|
351 |
+
<style>
|
352 |
+
'''
|
353 |
+
|
354 |
+
|
355 |
+
#################################################
|
356 |
+
title = r"""
|
357 |
+
<h1 align="center">StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</h1>
|
358 |
+
"""
|
359 |
+
|
360 |
+
description = r"""
|
361 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'><b>StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</b></a>.<br>
|
362 |
+
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
|
363 |
+
1️⃣ Enter a Textual Description for Character, if you add the Ref-Image, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
|
364 |
+
2️⃣ Enter the prompt array, each line corrsponds to one generated image.<br>
|
365 |
+
3️⃣ Choose your preferred style template.<br>
|
366 |
+
4️⃣ Click the <b>Submit</b> button to start customizing.
|
367 |
+
"""
|
368 |
+
|
369 |
+
article = r"""
|
370 |
+
|
371 |
+
If StoryDiffusion is helpful, please help to ⭐ the <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'>Github Repo</a>. Thanks!
|
372 |
+
[![GitHub Stars](https://img.shields.io/github/stars/HVision-NKU/StoryDiffusion?style=social)](https://github.com/HVision-NKU/StoryDiffusion)
|
373 |
+
---
|
374 |
+
📝 **Citation**
|
375 |
+
<br>
|
376 |
+
If our work is useful for your research, please consider citing:
|
377 |
+
|
378 |
+
```bibtex
|
379 |
+
@article{Zhou2024storydiffusion,
|
380 |
+
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
|
381 |
+
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
|
382 |
+
year={2024}
|
383 |
+
}
|
384 |
+
```
|
385 |
+
📋 **License**
|
386 |
+
<br>
|
387 |
+
The Contents you create are under Apache-2.0 LICENSE. The Code are under Attribution-NonCommercial 4.0 International.
|
388 |
+
|
389 |
+
📧 **Contact**
|
390 |
+
<br>
|
391 |
+
If you have any questions, please feel free to reach me out at <b>ypzhousdu@gmail.com</b>.
|
392 |
+
"""
|
393 |
+
version = r"""
|
394 |
+
<h3 align="center">StoryDiffusion Version 0.01 (test version)</h3>
|
395 |
+
|
396 |
+
<h5 >1. Support image ref image. (Cartoon Ref image is not support now)</h5>
|
397 |
+
<h5 >2. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5>
|
398 |
+
<h5 >3. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling.")</h5>
|
399 |
+
<h5 align="center">Tips: </h4>
|
400 |
+
"""
|
401 |
+
#################################################
|
402 |
+
global attn_count, total_count, id_length, total_length,cur_step, cur_model_type
|
403 |
+
global write
|
404 |
+
global sa32, sa64
|
405 |
+
global height,width
|
406 |
+
attn_count = 0
|
407 |
+
total_count = 0
|
408 |
+
cur_step = 0
|
409 |
+
id_length = 4
|
410 |
+
total_length = 5
|
411 |
+
cur_model_type = ""
|
412 |
+
device="cuda"
|
413 |
+
global attn_procs,unet
|
414 |
+
attn_procs = {}
|
415 |
+
###
|
416 |
+
write = False
|
417 |
+
###
|
418 |
+
sa32 = 0.5
|
419 |
+
sa64 = 0.5
|
420 |
+
height = 768
|
421 |
+
width = 768
|
422 |
+
###
|
423 |
+
global pipe
|
424 |
+
global sd_model_path
|
425 |
+
pipe = None
|
426 |
+
sd_model_path = models_dict["RealVision"]#"SG161222/RealVisXL_V4.0"
|
427 |
+
### LOAD Stable Diffusion Pipeline
|
428 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors = True)
|
429 |
+
pipe = pipe.to(device)
|
430 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
431 |
+
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
432 |
+
pipe.scheduler.set_timesteps(50)
|
433 |
+
unet = pipe.unet
|
434 |
+
### Insert PairedAttention
|
435 |
+
for name in unet.attn_processors.keys():
|
436 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
437 |
+
if name.startswith("mid_block"):
|
438 |
+
hidden_size = unet.config.block_out_channels[-1]
|
439 |
+
elif name.startswith("up_blocks"):
|
440 |
+
block_id = int(name[len("up_blocks.")])
|
441 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
442 |
+
elif name.startswith("down_blocks"):
|
443 |
+
block_id = int(name[len("down_blocks.")])
|
444 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
445 |
+
if cross_attention_dim is None and (name.startswith("up_blocks") ) :
|
446 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)
|
447 |
+
total_count +=1
|
448 |
+
else:
|
449 |
+
attn_procs[name] = AttnProcessor()
|
450 |
+
print("successsfully load paired self-attention")
|
451 |
+
print(f"number of the processor : {total_count}")
|
452 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
453 |
+
global mask1024,mask4096
|
454 |
+
mask1024, mask4096 = cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device=device,dtype= torch.float16)
|
455 |
+
|
456 |
+
######### Gradio Fuction #############
|
457 |
+
|
458 |
+
def swap_to_gallery(images):
|
459 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
460 |
+
|
461 |
+
def upload_example_to_gallery(images, prompt, style, negative_prompt):
|
462 |
+
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
|
463 |
+
|
464 |
+
def remove_back_to_files():
|
465 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
466 |
+
|
467 |
+
def remove_tips():
|
468 |
+
return gr.update(visible=False)
|
469 |
+
|
470 |
+
def apply_style_positive(style_name: str, positive: str):
|
471 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
472 |
+
return p.replace("{prompt}", positive)
|
473 |
+
|
474 |
+
def apply_style(style_name: str, positives: list, negative: str = ""):
|
475 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
476 |
+
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
|
477 |
+
|
478 |
+
def change_visiale_by_model_type(_model_type):
|
479 |
+
if _model_type == "Only Using Textual Description":
|
480 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
481 |
+
elif _model_type == "Using Ref Images":
|
482 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
483 |
+
else:
|
484 |
+
raise ValueError("Invalid model type",_model_type)
|
485 |
+
|
486 |
+
|
487 |
+
######### Image Generation ##############
|
488 |
+
def process_generation(_sd_type,_model_type,_upload_images, _num_steps,style_name, _Ip_Adapter_Strength ,_style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt,prompt_array,G_height,G_width,_comic_type):
|
489 |
+
_model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
|
490 |
+
if _model_type == "Photomaker" and "img" not in general_prompt:
|
491 |
+
raise gr.Error("Please add the triger word \" img \" behind the class word you want to customize, such as: man img or woman img")
|
492 |
+
if _upload_images is None and _model_type != "original":
|
493 |
+
raise gr.Error(f"Cannot find any input face image!")
|
494 |
+
global sa32, sa64,id_length,total_length,attn_procs,unet,cur_model_type
|
495 |
+
global write
|
496 |
+
global cur_step,attn_count
|
497 |
+
global height,width
|
498 |
+
height = G_height
|
499 |
+
width = G_width
|
500 |
+
global pipe
|
501 |
+
global sd_model_path,models_dict
|
502 |
+
sd_model_path = models_dict[_sd_type]
|
503 |
+
use_safe_tensor = True
|
504 |
+
if cur_model_type != _sd_type+"-"+_model_type+""+str(id_length_):
|
505 |
+
if _sd_type == "Unstable":
|
506 |
+
use_safe_tensor = False
|
507 |
+
# apply the style template
|
508 |
+
##### load pipe
|
509 |
+
|
510 |
+
if _model_type == "original":
|
511 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors=use_safe_tensor)
|
512 |
+
pipe = pipe.to(device)
|
513 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
514 |
+
elif _model_type == "Photomaker":
|
515 |
+
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
516 |
+
sd_model_path, torch_dtype=torch.float16, use_safetensors=use_safe_tensor)
|
517 |
+
pipe = pipe.to(device)
|
518 |
+
pipe.load_photomaker_adapter(
|
519 |
+
os.path.dirname(photomaker_path),
|
520 |
+
subfolder="",
|
521 |
+
weight_name=os.path.basename(photomaker_path),
|
522 |
+
trigger_word="img" # define the trigger word
|
523 |
+
)
|
524 |
+
pipe.fuse_lora()
|
525 |
+
set_attention_processor(pipe.unet,id_length_,is_ipadapter = False)
|
526 |
+
else:
|
527 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
528 |
+
##### ########################
|
529 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
530 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
531 |
+
cur_model_type = _sd_type+"-"+_model_type+""+str(id_length_)
|
532 |
+
else:
|
533 |
+
unet = pipe.unet
|
534 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
535 |
+
if _model_type != "original":
|
536 |
+
input_id_images = []
|
537 |
+
for img in _upload_images:
|
538 |
+
print(img)
|
539 |
+
input_id_images.append(load_image(img))
|
540 |
+
prompts = prompt_array.splitlines()
|
541 |
+
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
|
542 |
+
if start_merge_step > 30:
|
543 |
+
start_merge_step = 30
|
544 |
+
print(f"start_merge_step:{start_merge_step}")
|
545 |
+
generator = torch.Generator(device="cuda").manual_seed(seed_)
|
546 |
+
sa32, sa64 = sa32_, sa64_
|
547 |
+
id_length = id_length_
|
548 |
+
clipped_prompts = prompts[:]
|
549 |
+
nc_indexs = []
|
550 |
+
for ind,prompt in enumerate(clipped_prompts):
|
551 |
+
if "[NC]" in prompt:
|
552 |
+
nc_indexs.append(ind)
|
553 |
+
if ind < id_length:
|
554 |
+
raise gr.Error(f"The first {id_length} row is id prompts, cannot use [NC]!")
|
555 |
+
prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace("[NC]","") for prompt in clipped_prompts]
|
556 |
+
prompts = [prompt.rpartition('#')[0] if "#" in prompt else prompt for prompt in prompts]
|
557 |
+
print(prompts)
|
558 |
+
id_prompts = prompts[:id_length]
|
559 |
+
real_prompts = prompts[id_length:]
|
560 |
+
torch.cuda.empty_cache()
|
561 |
+
write = True
|
562 |
+
cur_step = 0
|
563 |
+
|
564 |
+
attn_count = 0
|
565 |
+
id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)
|
566 |
+
setup_seed(seed_)
|
567 |
+
total_results = []
|
568 |
+
if _model_type == "original":
|
569 |
+
id_images = pipe(id_prompts, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
570 |
+
elif _model_type == "Photomaker":
|
571 |
+
id_images = pipe(id_prompts,input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images
|
572 |
+
else:
|
573 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
574 |
+
total_results = id_images + total_results
|
575 |
+
yield total_results
|
576 |
+
real_images = []
|
577 |
+
write = False
|
578 |
+
for ind,real_prompt in enumerate(real_prompts):
|
579 |
+
setup_seed(seed_)
|
580 |
+
cur_step = 0
|
581 |
+
real_prompt = apply_style_positive(style_name, real_prompt)
|
582 |
+
if _model_type == "original":
|
583 |
+
real_images.append(pipe(real_prompt, num_inference_steps=_num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])
|
584 |
+
elif _model_type == "Photomaker":
|
585 |
+
real_images.append(pipe(real_prompt, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale, start_merge_step = start_merge_step, height = height, width = width,negative_prompt = negative_prompt,generator = generator,nc_flag = True if ind+id_length in nc_indexs else False ).images[0])
|
586 |
+
else:
|
587 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {_model_type}")
|
588 |
+
total_results = [real_images[-1]] + total_results
|
589 |
+
yield total_results
|
590 |
+
if _comic_type != "No typesetting (default)":
|
591 |
+
captions= prompt_array.splitlines()
|
592 |
+
captions = [caption.replace("[NC]","") for caption in captions]
|
593 |
+
captions = [caption.split('#')[-1] if "#" in caption else caption for caption in captions]
|
594 |
+
from PIL import ImageFont
|
595 |
+
total_results = get_comic(id_images + real_images, _comic_type,captions= captions,font=ImageFont.truetype("./fonts/Inkfree.ttf", int(45))) + total_results
|
596 |
+
yield total_results
|
597 |
+
|
598 |
+
|
599 |
+
|
600 |
+
def array2string(arr):
|
601 |
+
stringtmp = ""
|
602 |
+
for i,part in enumerate(arr):
|
603 |
+
if i != len(arr)-1:
|
604 |
+
stringtmp += part +"\n"
|
605 |
+
else:
|
606 |
+
stringtmp += part
|
607 |
+
|
608 |
+
return stringtmp
|
609 |
+
|
610 |
+
|
611 |
+
#################################################
|
612 |
+
#################################################
|
613 |
+
### define the interface
|
614 |
+
with gr.Blocks(css=css) as demo:
|
615 |
+
binary_matrixes = gr.State([])
|
616 |
+
color_layout = gr.State([])
|
617 |
+
|
618 |
+
# gr.Markdown(logo)
|
619 |
+
gr.Markdown(title)
|
620 |
+
gr.Markdown(description)
|
621 |
+
|
622 |
+
with gr.Row():
|
623 |
+
with gr.Group(elem_id="main-image"):
|
624 |
+
|
625 |
+
prompts = []
|
626 |
+
colors = []
|
627 |
+
|
628 |
+
with gr.Column(visible=True) as gen_prompt_vis:
|
629 |
+
sd_type = gr.Dropdown(choices=list(models_dict.keys()), value = "Unstable",label="sd_type", info="Select pretrained model")
|
630 |
+
model_type = gr.Radio(["Only Using Textual Description", "Using Ref Images"], label="model_type", value = "Only Using Textual Description", info="Control type of the Character")
|
631 |
+
with gr.Group(visible=False) as control_image_input:
|
632 |
+
files = gr.Files(
|
633 |
+
label="Drag (Select) 1 or more photos of your face",
|
634 |
+
file_types=["image"],
|
635 |
+
)
|
636 |
+
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
|
637 |
+
with gr.Column(visible=False) as clear_button:
|
638 |
+
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
639 |
+
general_prompt = gr.Textbox(value='', label="(1) Textual Description for Character", interactive=True)
|
640 |
+
negative_prompt = gr.Textbox(value='', label="(2) Negative_prompt", interactive=True)
|
641 |
+
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
642 |
+
prompt_array = gr.Textbox(lines = 3,value='', label="(3) Comic Description (each line corresponds to a frame).", interactive=True)
|
643 |
+
with gr.Accordion("(4) Tune the hyperparameters", open=True):
|
644 |
+
sa32_ = gr.Slider(label=" (The degree of Paired Attention at 32 x 32 self-attention layers) ", minimum=0, maximum=1., value=0.5, step=0.1)
|
645 |
+
sa64_ = gr.Slider(label=" (The degree of Paired Attention at 64 x 64 self-attention layers) ", minimum=0, maximum=1., value=0.5, step=0.1)
|
646 |
+
id_length_ = gr.Slider(label= "Number of id images in total images" , minimum=2, maximum=4, value=2, step=1)
|
647 |
+
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1)
|
648 |
+
num_steps = gr.Slider(
|
649 |
+
label="Number of sample steps",
|
650 |
+
minimum=20,
|
651 |
+
maximum=100,
|
652 |
+
step=1,
|
653 |
+
value=50,
|
654 |
+
)
|
655 |
+
G_height = gr.Slider(
|
656 |
+
label="height",
|
657 |
+
minimum=256,
|
658 |
+
maximum=1024,
|
659 |
+
step=32,
|
660 |
+
value=768,
|
661 |
+
)
|
662 |
+
G_width = gr.Slider(
|
663 |
+
label="width",
|
664 |
+
minimum=256,
|
665 |
+
maximum=1024,
|
666 |
+
step=32,
|
667 |
+
value=768,
|
668 |
+
)
|
669 |
+
comic_type = gr.Radio(["No typesetting (default)", "Four Pannel", "Classic Comic Style"], value = "Classic Comic Style", label="Typesetting Style", info="Select the typesetting style ")
|
670 |
+
guidance_scale = gr.Slider(
|
671 |
+
label="Guidance scale",
|
672 |
+
minimum=0.1,
|
673 |
+
maximum=10.0,
|
674 |
+
step=0.1,
|
675 |
+
value=5,
|
676 |
+
)
|
677 |
+
style_strength_ratio = gr.Slider(
|
678 |
+
label="Style strength of Ref Image (%)",
|
679 |
+
minimum=15,
|
680 |
+
maximum=50,
|
681 |
+
step=1,
|
682 |
+
value=20,
|
683 |
+
visible=False
|
684 |
+
)
|
685 |
+
Ip_Adapter_Strength = gr.Slider(
|
686 |
+
label="Ip_Adapter_Strength",
|
687 |
+
minimum=0,
|
688 |
+
maximum=1,
|
689 |
+
step=0.1,
|
690 |
+
value=0.5,
|
691 |
+
visible=False
|
692 |
+
)
|
693 |
+
final_run_btn = gr.Button("Generate ! 😺")
|
694 |
+
|
695 |
+
|
696 |
+
with gr.Column():
|
697 |
+
out_image = gr.Gallery(label="Result", columns=2, height='auto')
|
698 |
+
generated_information = gr.Markdown(label="Generation Details", value="",visible=False)
|
699 |
+
gr.Markdown(version)
|
700 |
+
model_type.change(fn = change_visiale_by_model_type , inputs = model_type, outputs=[control_image_input,style_strength_ratio,Ip_Adapter_Strength])
|
701 |
+
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
|
702 |
+
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
|
703 |
+
|
704 |
+
final_run_btn.click(fn=set_text_unfinished, outputs = generated_information
|
705 |
+
).then(process_generation, inputs=[sd_type,model_type,files, num_steps,style, Ip_Adapter_Strength,style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,G_height,G_width,comic_type], outputs=out_image
|
706 |
+
).then(fn=set_text_finished,outputs = generated_information)
|
707 |
+
|
708 |
+
|
709 |
+
gr.Examples(
|
710 |
+
examples=[
|
711 |
+
[0,0.5,0.5,2,"a man, wearing black suit",
|
712 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
713 |
+
array2string(["at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
|
714 |
+
"on the road, near the forest",
|
715 |
+
"[NC] The car on the road, near the forest #He drives to the forest in search of treasure.",
|
716 |
+
"[NC]A tiger appeared in the forest, at night ",
|
717 |
+
"very frightened, open mouth, in the forest, at night",
|
718 |
+
"running very fast, in the forest, at night",
|
719 |
+
"[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!",
|
720 |
+
"in the house filled with treasure, laughing, at night #He is overjoyed inside the house."
|
721 |
+
]),
|
722 |
+
"Comic book","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
723 |
+
],
|
724 |
+
[0,0.5,0.5,2,"a man, wearing black suit",
|
725 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
726 |
+
array2string(["at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
|
727 |
+
"on the road, near the forest",
|
728 |
+
"[NC] The car on the road, near the forest #He drives to the forest in search of treasure.",
|
729 |
+
"[NC]A tiger appeared in the forest, at night ",
|
730 |
+
"very frightened, open mouth, in the forest, at night",
|
731 |
+
"running very fast, in the forest, at night",
|
732 |
+
"[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!",
|
733 |
+
"in the house filled with treasure, laughing, at night #He is overjoyed inside the house."
|
734 |
+
]),
|
735 |
+
"Comic book","Only Using Textual Description",get_image_path_list('./examples/Robert'),1024,1024
|
736 |
+
],
|
737 |
+
[1,0.5,0.5,3,"a woman img, wearing a white T-shirt, blue loose hair",
|
738 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
739 |
+
array2string(["wake up in the bed",
|
740 |
+
"have breakfast",
|
741 |
+
"is on the road, go to company",
|
742 |
+
"work in the company",
|
743 |
+
"Take a walk next to the company at noon",
|
744 |
+
"lying in bed at night"]),
|
745 |
+
"Japanese Anime", "Using Ref Images",get_image_path_list('./examples/taylor'),768,768
|
746 |
+
],
|
747 |
+
[0,0.5,0.5,3,"a man, wearing black jacket",
|
748 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
749 |
+
array2string(["wake up in the bed",
|
750 |
+
"have breakfast",
|
751 |
+
"is on the road, go to the company, close look",
|
752 |
+
"work in the company",
|
753 |
+
"laughing happily",
|
754 |
+
"lying in bed at night"
|
755 |
+
]),
|
756 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
757 |
+
],
|
758 |
+
[0,0.3,0.5,3,"a girl, wearing white shirt, black skirt, black tie, yellow hair",
|
759 |
+
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
760 |
+
array2string([
|
761 |
+
"at home #at home, began to go to drawing",
|
762 |
+
"sitting alone on a park bench.",
|
763 |
+
"reading a book on a park bench.",
|
764 |
+
"[NC]A squirrel approaches, peeking over the bench. ",
|
765 |
+
"look around in the park. # She looks around and enjoys the beauty of nature.",
|
766 |
+
"[NC]leaf falls from the tree, landing on the sketchbook.",
|
767 |
+
"picks up the leaf, examining its details closely.",
|
768 |
+
"[NC]The brown squirrel appear.",
|
769 |
+
"is very happy # She is very happy to see the squirrel again",
|
770 |
+
"[NC]The brown squirrel takes the cracker and scampers up a tree. # She gives the squirrel cracker"]),
|
771 |
+
"Japanese Anime","Only Using Textual Description",get_image_path_list('./examples/taylor'),768,768
|
772 |
+
]
|
773 |
+
],
|
774 |
+
inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array,style,model_type,files,G_height,G_width],
|
775 |
+
# outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
|
776 |
+
# run_on_click=True,
|
777 |
+
label='😺 Examples 😺',
|
778 |
+
)
|
779 |
+
gr.Markdown(article)
|
780 |
+
|
781 |
+
|
782 |
+
demo.launch(server_name="0.0.0.0", share = False)
|
images/logo.png
ADDED
images/pad_images.png
ADDED
predict.py
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prediction interface for Cog ⚙️
|
2 |
+
# https://cog.run/python
|
3 |
+
|
4 |
+
import os
|
5 |
+
import copy
|
6 |
+
import random
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
import time
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from PIL import ImageFont
|
13 |
+
from cog import BasePredictor, Input, Path, BaseModel
|
14 |
+
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
15 |
+
from diffusers.utils import load_image
|
16 |
+
|
17 |
+
from utils import PhotoMakerStableDiffusionXLPipeline
|
18 |
+
from utils.style_template import styles
|
19 |
+
from utils.gradio_utils import (
|
20 |
+
AttnProcessor2_0 as AttnProcessor,
|
21 |
+
) # with torch2 installed
|
22 |
+
from utils.gradio_utils import cal_attn_mask_xl
|
23 |
+
from utils.utils import get_comic
|
24 |
+
|
25 |
+
MODEL_URL = "https://weights.replicate.delivery/default/HVision_NKU/StoryDiffusion.tar"
|
26 |
+
MODEL_CACHE = "model_weights"
|
27 |
+
STYLE_NAMES = list(styles.keys())
|
28 |
+
DEFAULT_STYLE_NAME = "Japanese Anime"
|
29 |
+
|
30 |
+
global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
|
31 |
+
global sa32, sa64
|
32 |
+
global write
|
33 |
+
global height, width
|
34 |
+
|
35 |
+
|
36 |
+
"""
|
37 |
+
# load and upload the weights to replicate.delivery for faster booting on Replicate
|
38 |
+
models_dict = {
|
39 |
+
"RealVision": "SG161222/RealVisXL_V4.0",
|
40 |
+
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y",
|
41 |
+
}
|
42 |
+
# photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
|
43 |
+
photomaker_path = f"{MODEL_CACHE}/PhotoMaker/photomaker-v1.bin"
|
44 |
+
|
45 |
+
pipe_unstable = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
46 |
+
models_dict["Unstable"],
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
use_safetensors=False,
|
49 |
+
)
|
50 |
+
pipe_unstable.save_pretrained(f"{MODEL_CACHE}/Unstable/stablediffusionapi/sdxl-unstable-diffusers-y")
|
51 |
+
|
52 |
+
pipe_realvision = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
53 |
+
models_dict["RealVision"], torch_dtype=torch.float16, use_safetensors=True
|
54 |
+
)
|
55 |
+
pipe_realvision.save_pretrained(f"{MODEL_CACHE}/RealVision/SG161222/RealVisXL_V4.0")
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
class ModelOutput(BaseModel):
|
60 |
+
comic: Path
|
61 |
+
individual_images: list[Path]
|
62 |
+
|
63 |
+
|
64 |
+
def download_weights(url, dest):
|
65 |
+
start = time.time()
|
66 |
+
print("downloading url: ", url)
|
67 |
+
print("downloading to: ", dest)
|
68 |
+
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
|
69 |
+
print("downloading took: ", time.time() - start)
|
70 |
+
|
71 |
+
|
72 |
+
def setup_seed(seed):
|
73 |
+
torch.manual_seed(seed)
|
74 |
+
torch.cuda.manual_seed_all(seed)
|
75 |
+
np.random.seed(seed)
|
76 |
+
random.seed(seed)
|
77 |
+
torch.backends.cudnn.deterministic = True
|
78 |
+
|
79 |
+
|
80 |
+
def apply_style_positive(style_name: str, positive: str):
|
81 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
82 |
+
return p.replace("{prompt}", positive)
|
83 |
+
|
84 |
+
|
85 |
+
def apply_style(style_name: str, positives: list, negative: str = ""):
|
86 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
87 |
+
return [
|
88 |
+
p.replace("{prompt}", positive) for positive in positives
|
89 |
+
], n + " " + negative
|
90 |
+
|
91 |
+
|
92 |
+
def set_attention_processor(unet, id_length, is_ipadapter=False):
|
93 |
+
global total_count
|
94 |
+
total_count = 0
|
95 |
+
attn_procs = {}
|
96 |
+
for name in unet.attn_processors.keys():
|
97 |
+
cross_attention_dim = (
|
98 |
+
None
|
99 |
+
if name.endswith("attn1.processor")
|
100 |
+
else unet.config.cross_attention_dim
|
101 |
+
)
|
102 |
+
if name.startswith("mid_block"):
|
103 |
+
hidden_size = unet.config.block_out_channels[-1]
|
104 |
+
elif name.startswith("up_blocks"):
|
105 |
+
block_id = int(name[len("up_blocks.")])
|
106 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
107 |
+
elif name.startswith("down_blocks"):
|
108 |
+
block_id = int(name[len("down_blocks.")])
|
109 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
110 |
+
if cross_attention_dim is None:
|
111 |
+
if name.startswith("up_blocks"):
|
112 |
+
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
|
113 |
+
total_count += 1
|
114 |
+
else:
|
115 |
+
attn_procs[name] = AttnProcessor()
|
116 |
+
else:
|
117 |
+
if is_ipadapter:
|
118 |
+
attn_procs[name] = IPAttnProcessor2_0(
|
119 |
+
hidden_size=hidden_size,
|
120 |
+
cross_attention_dim=cross_attention_dim,
|
121 |
+
scale=1,
|
122 |
+
num_tokens=4,
|
123 |
+
).to(unet.device, dtype=torch.float16)
|
124 |
+
else:
|
125 |
+
attn_procs[name] = AttnProcessor()
|
126 |
+
|
127 |
+
unet.set_attn_processor(copy.deepcopy(attn_procs))
|
128 |
+
print("Successfully load paired self-attention")
|
129 |
+
print(f"Number of the processor : {total_count}")
|
130 |
+
|
131 |
+
|
132 |
+
#################################################
|
133 |
+
########Consistent Self-Attention################
|
134 |
+
#################################################
|
135 |
+
class SpatialAttnProcessor2_0(torch.nn.Module):
|
136 |
+
r"""
|
137 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
138 |
+
Args:
|
139 |
+
hidden_size (`int`):
|
140 |
+
The hidden size of the attention layer.
|
141 |
+
cross_attention_dim (`int`):
|
142 |
+
The number of channels in the `encoder_hidden_states`.
|
143 |
+
text_context_len (`int`, defaults to 77):
|
144 |
+
The context length of the text features.
|
145 |
+
scale (`float`, defaults to 1.0):
|
146 |
+
the weight scale of image prompt.
|
147 |
+
"""
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
hidden_size=None,
|
152 |
+
cross_attention_dim=None,
|
153 |
+
id_length=4,
|
154 |
+
device="cuda",
|
155 |
+
dtype=torch.float16,
|
156 |
+
):
|
157 |
+
super().__init__()
|
158 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
159 |
+
raise ImportError(
|
160 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
161 |
+
)
|
162 |
+
self.device = device
|
163 |
+
self.dtype = dtype
|
164 |
+
self.hidden_size = hidden_size
|
165 |
+
self.cross_attention_dim = cross_attention_dim
|
166 |
+
self.total_length = id_length + 1
|
167 |
+
self.id_length = id_length
|
168 |
+
self.id_bank = {}
|
169 |
+
|
170 |
+
def __call__(
|
171 |
+
self,
|
172 |
+
attn,
|
173 |
+
hidden_states,
|
174 |
+
encoder_hidden_states=None,
|
175 |
+
attention_mask=None,
|
176 |
+
temb=None,
|
177 |
+
):
|
178 |
+
global total_count, attn_count, cur_step, mask1024, mask4096
|
179 |
+
global sa32, sa64
|
180 |
+
global write
|
181 |
+
global height, width
|
182 |
+
if write:
|
183 |
+
self.id_bank[cur_step] = [
|
184 |
+
hidden_states[: self.id_length],
|
185 |
+
hidden_states[self.id_length :],
|
186 |
+
]
|
187 |
+
else:
|
188 |
+
encoder_hidden_states = torch.cat(
|
189 |
+
(
|
190 |
+
self.id_bank[cur_step][0].to(self.device),
|
191 |
+
hidden_states[:1],
|
192 |
+
self.id_bank[cur_step][1].to(self.device),
|
193 |
+
hidden_states[1:],
|
194 |
+
)
|
195 |
+
)
|
196 |
+
# skip in early step
|
197 |
+
if cur_step < 5:
|
198 |
+
hidden_states = self.__call2__(
|
199 |
+
attn, hidden_states, encoder_hidden_states, attention_mask, temb
|
200 |
+
)
|
201 |
+
else: # 256 1024 4096
|
202 |
+
random_number = random.random()
|
203 |
+
if cur_step < 20:
|
204 |
+
rand_num = 0.3
|
205 |
+
else:
|
206 |
+
rand_num = 0.1
|
207 |
+
if random_number > rand_num:
|
208 |
+
if not write:
|
209 |
+
if hidden_states.shape[1] == (height // 32) * (width // 32):
|
210 |
+
attention_mask = mask1024[
|
211 |
+
mask1024.shape[0] // self.total_length * self.id_length :
|
212 |
+
]
|
213 |
+
else:
|
214 |
+
attention_mask = mask4096[
|
215 |
+
mask4096.shape[0] // self.total_length * self.id_length :
|
216 |
+
]
|
217 |
+
else:
|
218 |
+
if hidden_states.shape[1] == (height // 32) * (width // 32):
|
219 |
+
attention_mask = mask1024[
|
220 |
+
: mask1024.shape[0] // self.total_length * self.id_length,
|
221 |
+
: mask1024.shape[0] // self.total_length * self.id_length,
|
222 |
+
]
|
223 |
+
else:
|
224 |
+
attention_mask = mask4096[
|
225 |
+
: mask4096.shape[0] // self.total_length * self.id_length,
|
226 |
+
: mask4096.shape[0] // self.total_length * self.id_length,
|
227 |
+
]
|
228 |
+
hidden_states = self.__call1__(
|
229 |
+
attn, hidden_states, encoder_hidden_states, attention_mask, temb
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
hidden_states = self.__call2__(
|
233 |
+
attn, hidden_states, None, attention_mask, temb
|
234 |
+
)
|
235 |
+
attn_count += 1
|
236 |
+
if attn_count == total_count:
|
237 |
+
attn_count = 0
|
238 |
+
cur_step += 1
|
239 |
+
mask1024, mask4096 = cal_attn_mask_xl(
|
240 |
+
self.total_length,
|
241 |
+
self.id_length,
|
242 |
+
sa32,
|
243 |
+
sa64,
|
244 |
+
height,
|
245 |
+
width,
|
246 |
+
device=self.device,
|
247 |
+
dtype=self.dtype,
|
248 |
+
)
|
249 |
+
|
250 |
+
return hidden_states
|
251 |
+
|
252 |
+
def __call1__(
|
253 |
+
self,
|
254 |
+
attn,
|
255 |
+
hidden_states,
|
256 |
+
encoder_hidden_states=None,
|
257 |
+
attention_mask=None,
|
258 |
+
temb=None,
|
259 |
+
):
|
260 |
+
residual = hidden_states
|
261 |
+
if attn.spatial_norm is not None:
|
262 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
263 |
+
input_ndim = hidden_states.ndim
|
264 |
+
|
265 |
+
if input_ndim == 4:
|
266 |
+
total_batch_size, channel, height, width = hidden_states.shape
|
267 |
+
hidden_states = hidden_states.view(
|
268 |
+
total_batch_size, channel, height * width
|
269 |
+
).transpose(1, 2)
|
270 |
+
total_batch_size, nums_token, channel = hidden_states.shape
|
271 |
+
img_nums = total_batch_size // 2
|
272 |
+
hidden_states = hidden_states.view(-1, img_nums, nums_token, channel).reshape(
|
273 |
+
-1, img_nums * nums_token, channel
|
274 |
+
)
|
275 |
+
|
276 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
277 |
+
|
278 |
+
if attn.group_norm is not None:
|
279 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
280 |
+
1, 2
|
281 |
+
)
|
282 |
+
|
283 |
+
query = attn.to_q(hidden_states)
|
284 |
+
|
285 |
+
if encoder_hidden_states is None:
|
286 |
+
encoder_hidden_states = hidden_states # B, N, C
|
287 |
+
else:
|
288 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
289 |
+
-1, self.id_length + 1, nums_token, channel
|
290 |
+
).reshape(-1, (self.id_length + 1) * nums_token, channel)
|
291 |
+
|
292 |
+
key = attn.to_k(encoder_hidden_states)
|
293 |
+
value = attn.to_v(encoder_hidden_states)
|
294 |
+
|
295 |
+
inner_dim = key.shape[-1]
|
296 |
+
head_dim = inner_dim // attn.heads
|
297 |
+
|
298 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
299 |
+
|
300 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
301 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
302 |
+
hidden_states = F.scaled_dot_product_attention(
|
303 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
304 |
+
)
|
305 |
+
|
306 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
307 |
+
total_batch_size, -1, attn.heads * head_dim
|
308 |
+
)
|
309 |
+
hidden_states = hidden_states.to(query.dtype)
|
310 |
+
|
311 |
+
# linear proj
|
312 |
+
hidden_states = attn.to_out[0](hidden_states)
|
313 |
+
# dropout
|
314 |
+
hidden_states = attn.to_out[1](hidden_states)
|
315 |
+
|
316 |
+
if input_ndim == 4:
|
317 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
318 |
+
total_batch_size, channel, height, width
|
319 |
+
)
|
320 |
+
if attn.residual_connection:
|
321 |
+
hidden_states = hidden_states + residual
|
322 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
323 |
+
# print(hidden_states.shape)
|
324 |
+
return hidden_states
|
325 |
+
|
326 |
+
def __call2__(
|
327 |
+
self,
|
328 |
+
attn,
|
329 |
+
hidden_states,
|
330 |
+
encoder_hidden_states=None,
|
331 |
+
attention_mask=None,
|
332 |
+
temb=None,
|
333 |
+
):
|
334 |
+
residual = hidden_states
|
335 |
+
|
336 |
+
if attn.spatial_norm is not None:
|
337 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
338 |
+
|
339 |
+
input_ndim = hidden_states.ndim
|
340 |
+
|
341 |
+
if input_ndim == 4:
|
342 |
+
batch_size, channel, height, width = hidden_states.shape
|
343 |
+
hidden_states = hidden_states.view(
|
344 |
+
batch_size, channel, height * width
|
345 |
+
).transpose(1, 2)
|
346 |
+
|
347 |
+
batch_size, sequence_length, channel = hidden_states.shape
|
348 |
+
# print(hidden_states.shape)
|
349 |
+
if attention_mask is not None:
|
350 |
+
attention_mask = attn.prepare_attention_mask(
|
351 |
+
attention_mask, sequence_length, batch_size
|
352 |
+
)
|
353 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
354 |
+
# (batch, heads, source_length, target_length)
|
355 |
+
attention_mask = attention_mask.view(
|
356 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
357 |
+
)
|
358 |
+
|
359 |
+
if attn.group_norm is not None:
|
360 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
361 |
+
1, 2
|
362 |
+
)
|
363 |
+
|
364 |
+
query = attn.to_q(hidden_states)
|
365 |
+
|
366 |
+
if encoder_hidden_states is None:
|
367 |
+
encoder_hidden_states = hidden_states # B, N, C
|
368 |
+
else:
|
369 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
370 |
+
-1, self.id_length + 1, sequence_length, channel
|
371 |
+
).reshape(-1, (self.id_length + 1) * sequence_length, channel)
|
372 |
+
|
373 |
+
key = attn.to_k(encoder_hidden_states)
|
374 |
+
value = attn.to_v(encoder_hidden_states)
|
375 |
+
|
376 |
+
inner_dim = key.shape[-1]
|
377 |
+
head_dim = inner_dim // attn.heads
|
378 |
+
|
379 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
380 |
+
|
381 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
382 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
383 |
+
|
384 |
+
hidden_states = F.scaled_dot_product_attention(
|
385 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
386 |
+
)
|
387 |
+
|
388 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
389 |
+
batch_size, -1, attn.heads * head_dim
|
390 |
+
)
|
391 |
+
hidden_states = hidden_states.to(query.dtype)
|
392 |
+
|
393 |
+
# linear proj
|
394 |
+
hidden_states = attn.to_out[0](hidden_states)
|
395 |
+
# dropout
|
396 |
+
hidden_states = attn.to_out[1](hidden_states)
|
397 |
+
|
398 |
+
if input_ndim == 4:
|
399 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
400 |
+
batch_size, channel, height, width
|
401 |
+
)
|
402 |
+
|
403 |
+
if attn.residual_connection:
|
404 |
+
hidden_states = hidden_states + residual
|
405 |
+
|
406 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
407 |
+
|
408 |
+
return hidden_states
|
409 |
+
|
410 |
+
|
411 |
+
class Predictor(BasePredictor):
|
412 |
+
def setup(self) -> None:
|
413 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
414 |
+
|
415 |
+
models_dict = {
|
416 |
+
"RealVision": "SG161222/RealVisXL_V4.0",
|
417 |
+
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y",
|
418 |
+
}
|
419 |
+
|
420 |
+
if not os.path.exists(MODEL_CACHE):
|
421 |
+
download_weights(MODEL_URL, MODEL_CACHE)
|
422 |
+
|
423 |
+
photomaker_path = f"{MODEL_CACHE}/PhotoMaker/photomaker-v1.bin"
|
424 |
+
|
425 |
+
self.sdxl_pipe_unstable = StableDiffusionXLPipeline.from_pretrained(
|
426 |
+
f"{MODEL_CACHE}/Unstable/sdxl/stablediffusionapi/sdxl-unstable-diffusers-y",
|
427 |
+
torch_dtype=torch.float16,
|
428 |
+
)
|
429 |
+
self.sdxl_pipe_realvision = StableDiffusionXLPipeline.from_pretrained(
|
430 |
+
f"{MODEL_CACHE}/RealVision/sdxl/SG161222/RealVisXL_V4.0",
|
431 |
+
torch_dtype=torch.float16,
|
432 |
+
)
|
433 |
+
|
434 |
+
self.pipe_unstable = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
435 |
+
f"{MODEL_CACHE}/Unstable/stablediffusionapi/sdxl-unstable-diffusers-y",
|
436 |
+
torch_dtype=torch.float16,
|
437 |
+
use_safetensors=False,
|
438 |
+
)
|
439 |
+
self.pipe_unstable.load_photomaker_adapter(
|
440 |
+
os.path.dirname(photomaker_path),
|
441 |
+
subfolder="",
|
442 |
+
weight_name=os.path.basename(photomaker_path),
|
443 |
+
trigger_word="img", # define the trigger word
|
444 |
+
)
|
445 |
+
|
446 |
+
self.pipe_realvision = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
447 |
+
f"{MODEL_CACHE}/RealVision/SG161222/RealVisXL_V4.0",
|
448 |
+
torch_dtype=torch.float16,
|
449 |
+
use_safetensors=True,
|
450 |
+
)
|
451 |
+
self.pipe_realvision.load_photomaker_adapter(
|
452 |
+
os.path.dirname(photomaker_path),
|
453 |
+
subfolder="",
|
454 |
+
weight_name=os.path.basename(photomaker_path),
|
455 |
+
trigger_word="img", # define the trigger word
|
456 |
+
)
|
457 |
+
self.pipe_realvision.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
458 |
+
self.pipe_realvision.fuse_lora()
|
459 |
+
|
460 |
+
@torch.inference_mode()
|
461 |
+
def predict(
|
462 |
+
self,
|
463 |
+
sd_model: str = Input(
|
464 |
+
description="Choose a model",
|
465 |
+
choices=["Unstable", "RealVision"],
|
466 |
+
default="Unstable",
|
467 |
+
),
|
468 |
+
ref_image: Path = Input(
|
469 |
+
description="Reference image for the character",
|
470 |
+
default=None,
|
471 |
+
),
|
472 |
+
character_description: str = Input(
|
473 |
+
description="General description of the character. If ref_image above is provided, making sure to follow the class word you want to customize with the trigger word 'img', such as: 'man img' or 'woman img' or 'girl img'",
|
474 |
+
default="a man, wearing black suit",
|
475 |
+
),
|
476 |
+
negative_prompt: str = Input(
|
477 |
+
description="Describe things you do not want to see in the output",
|
478 |
+
default="bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
|
479 |
+
),
|
480 |
+
comic_description: str = Input(
|
481 |
+
description="Comic Description. Each frame is divided by a new line. Only the first 10 prompts are valid for demo speed! For comic_description NOT using ref_image: (1) Support Typesetting Style and Captioning. By default, the prompt is used as the caption for each image. If you need to change the caption, add a '#' at the end of each line. Only the part after the '#' will be added as a caption to the image. (2) The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the '[NC]' at the beginning of the line.",
|
482 |
+
default="at home, read new paper #at home, The newspaper says there is a treasure house in the forest.\non the road, near the forest\n[NC] The car on the road, near the forest #He drives to the forest in search of treasure.\n[NC]A tiger appeared in the forest, at night \nvery frightened, open mouth, in the forest, at night\nrunning very fast, in the forest, at night\n[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!\nin the house filled with treasure, laughing, at night #He is overjoyed inside the house.",
|
483 |
+
),
|
484 |
+
style_name: str = Input(
|
485 |
+
description="Style template",
|
486 |
+
choices=STYLE_NAMES,
|
487 |
+
default=DEFAULT_STYLE_NAME,
|
488 |
+
),
|
489 |
+
comic_style: str = Input(
|
490 |
+
description="Select the comic style for the combined comic",
|
491 |
+
choices=["Four Pannel", "Classic Comic Style"],
|
492 |
+
default="Classic Comic Style",
|
493 |
+
),
|
494 |
+
style_strength_ratio: int = Input(
|
495 |
+
description="Style strength of Ref Image (%), only used if ref_image is provided",
|
496 |
+
default=20,
|
497 |
+
ge=15,
|
498 |
+
le=50,
|
499 |
+
),
|
500 |
+
image_width: int = Input(
|
501 |
+
description="Width of output image",
|
502 |
+
choices=[
|
503 |
+
256,
|
504 |
+
288,
|
505 |
+
320,
|
506 |
+
352,
|
507 |
+
384,
|
508 |
+
416,
|
509 |
+
448,
|
510 |
+
480,
|
511 |
+
512,
|
512 |
+
544,
|
513 |
+
576,
|
514 |
+
608,
|
515 |
+
640,
|
516 |
+
672,
|
517 |
+
704,
|
518 |
+
736,
|
519 |
+
768,
|
520 |
+
800,
|
521 |
+
832,
|
522 |
+
864,
|
523 |
+
896,
|
524 |
+
928,
|
525 |
+
960,
|
526 |
+
992,
|
527 |
+
1024,
|
528 |
+
],
|
529 |
+
default=768,
|
530 |
+
),
|
531 |
+
image_height: int = Input(
|
532 |
+
description="Height of output image",
|
533 |
+
choices=[
|
534 |
+
256,
|
535 |
+
288,
|
536 |
+
320,
|
537 |
+
352,
|
538 |
+
384,
|
539 |
+
416,
|
540 |
+
448,
|
541 |
+
480,
|
542 |
+
512,
|
543 |
+
544,
|
544 |
+
576,
|
545 |
+
608,
|
546 |
+
640,
|
547 |
+
672,
|
548 |
+
704,
|
549 |
+
736,
|
550 |
+
768,
|
551 |
+
800,
|
552 |
+
832,
|
553 |
+
864,
|
554 |
+
896,
|
555 |
+
928,
|
556 |
+
960,
|
557 |
+
992,
|
558 |
+
1024,
|
559 |
+
],
|
560 |
+
default=768,
|
561 |
+
),
|
562 |
+
num_steps: int = Input(
|
563 |
+
description="Number of sample steps", ge=20, le=50, default=25
|
564 |
+
),
|
565 |
+
guidance_scale: float = Input(
|
566 |
+
description="Scale for classifier-free guidance", ge=0.1, le=10, default=5
|
567 |
+
),
|
568 |
+
seed: int = Input(
|
569 |
+
description="Random seed. Leave blank to randomize the seed", default=None
|
570 |
+
),
|
571 |
+
sa32_setting: float = Input(
|
572 |
+
description="The degree of Paired Attention at 32 x 32 self-attention layers",
|
573 |
+
default=0.5,
|
574 |
+
ge=0,
|
575 |
+
le=1.0,
|
576 |
+
),
|
577 |
+
sa64_setting: float = Input(
|
578 |
+
description="The degree of Paired Attention at 64 x 64 self-attention layers",
|
579 |
+
default=0.5,
|
580 |
+
ge=0,
|
581 |
+
le=1.0,
|
582 |
+
),
|
583 |
+
num_ids: int = Input(
|
584 |
+
description="Number of id images in total images. This should not exceed total number of line-separated prompts",
|
585 |
+
default=3,
|
586 |
+
),
|
587 |
+
output_format: str = Input(
|
588 |
+
description="Format of the output images",
|
589 |
+
choices=["webp", "jpg", "png"],
|
590 |
+
default="webp",
|
591 |
+
),
|
592 |
+
output_quality: int = Input(
|
593 |
+
description="Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality",
|
594 |
+
default=80,
|
595 |
+
ge=0,
|
596 |
+
le=100,
|
597 |
+
),
|
598 |
+
) -> ModelOutput:
|
599 |
+
"""Run a single prediction on the model"""
|
600 |
+
|
601 |
+
global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
|
602 |
+
global sa32, sa64
|
603 |
+
global write
|
604 |
+
global height, width
|
605 |
+
|
606 |
+
assert (
|
607 |
+
len(character_description.strip()) > 0
|
608 |
+
), "Please provide the description of the character."
|
609 |
+
|
610 |
+
if ref_image is not None:
|
611 |
+
assert (
|
612 |
+
"img" in character_description
|
613 |
+
), f"When using ref_image, please add the trigger word 'img' behind the class word you want to customize, such as: man img or woman img"
|
614 |
+
assert (
|
615 |
+
"[NC]" not in comic_description
|
616 |
+
), "You should not use trigger word [NC] when ref_image is provided."
|
617 |
+
|
618 |
+
height = image_height
|
619 |
+
width = image_width
|
620 |
+
id_length = num_ids
|
621 |
+
sa32 = sa32_setting
|
622 |
+
sa64 = sa64_setting
|
623 |
+
|
624 |
+
clipped_prompts = comic_description.splitlines()[:10]
|
625 |
+
print(clipped_prompts)
|
626 |
+
prompts = [
|
627 |
+
(
|
628 |
+
character_description + "," + prompt
|
629 |
+
if "[NC]" not in prompt
|
630 |
+
else prompt.replace("[NC]", "")
|
631 |
+
)
|
632 |
+
for prompt in clipped_prompts
|
633 |
+
]
|
634 |
+
print(prompts)
|
635 |
+
prompts = [
|
636 |
+
prompt.rpartition("#")[0].strip() if "#" in prompt else prompt.strip()
|
637 |
+
for prompt in prompts
|
638 |
+
]
|
639 |
+
print(prompts)
|
640 |
+
assert id_length <= len(
|
641 |
+
prompts
|
642 |
+
), "id_length should not exceed total number of line-separated prompts"
|
643 |
+
|
644 |
+
id_prompts = prompts[:id_length]
|
645 |
+
real_prompts = prompts[id_length:]
|
646 |
+
|
647 |
+
if seed is None:
|
648 |
+
seed = int.from_bytes(os.urandom(2), "big")
|
649 |
+
print(f"Using seed: {seed}")
|
650 |
+
|
651 |
+
device = "cuda:0"
|
652 |
+
setup_seed(seed)
|
653 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
654 |
+
|
655 |
+
torch.cuda.empty_cache()
|
656 |
+
|
657 |
+
model_type = "original" if ref_image is None else "Photomaker"
|
658 |
+
|
659 |
+
if model_type == "original":
|
660 |
+
pipe = (
|
661 |
+
self.sdxl_pipe_realvision
|
662 |
+
if style_name == "(No style)"
|
663 |
+
else self.sdxl_pipe_unstable
|
664 |
+
)
|
665 |
+
pipe = pipe.to(device)
|
666 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
667 |
+
else:
|
668 |
+
if sd_model != "RealVision" and style_name != "(No style)":
|
669 |
+
pipe = self.pipe_unstable.to(device)
|
670 |
+
else:
|
671 |
+
pipe = self.pipe_realvision.to(device)
|
672 |
+
pipe.id_encoder.to(device)
|
673 |
+
|
674 |
+
write = True
|
675 |
+
cur_step = 0
|
676 |
+
attn_count = 0
|
677 |
+
|
678 |
+
set_attention_processor(pipe.unet, id_length, is_ipadapter=False)
|
679 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
680 |
+
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
681 |
+
curmodel_type = sd_model + "-" + model_type + "" + str(id_length)
|
682 |
+
|
683 |
+
id_prompts, negative_prompt = apply_style(
|
684 |
+
style_name, id_prompts, negative_prompt
|
685 |
+
)
|
686 |
+
|
687 |
+
total_results = []
|
688 |
+
if model_type == "original":
|
689 |
+
id_images = pipe(
|
690 |
+
id_prompts,
|
691 |
+
num_inference_steps=num_steps,
|
692 |
+
guidance_scale=guidance_scale,
|
693 |
+
height=height,
|
694 |
+
width=width,
|
695 |
+
negative_prompt=negative_prompt,
|
696 |
+
generator=generator,
|
697 |
+
).images
|
698 |
+
else:
|
699 |
+
input_id_images = [load_image(str(ref_image))]
|
700 |
+
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
|
701 |
+
id_images = pipe(
|
702 |
+
id_prompts,
|
703 |
+
input_id_images=input_id_images,
|
704 |
+
num_inference_steps=num_steps,
|
705 |
+
guidance_scale=guidance_scale,
|
706 |
+
start_merge_step=start_merge_step,
|
707 |
+
height=height,
|
708 |
+
width=width,
|
709 |
+
negative_prompt=negative_prompt,
|
710 |
+
generator=generator,
|
711 |
+
).images
|
712 |
+
|
713 |
+
total_results = id_images + total_results
|
714 |
+
|
715 |
+
real_images = []
|
716 |
+
write = False
|
717 |
+
for real_prompt in real_prompts:
|
718 |
+
cur_step = 0
|
719 |
+
real_prompt = apply_style_positive(style_name, real_prompt)
|
720 |
+
if model_type == "original":
|
721 |
+
real_images.append(
|
722 |
+
pipe(
|
723 |
+
real_prompt,
|
724 |
+
num_inference_steps=num_steps,
|
725 |
+
guidance_scale=guidance_scale,
|
726 |
+
height=height,
|
727 |
+
width=width,
|
728 |
+
negative_prompt=negative_prompt,
|
729 |
+
generator=generator,
|
730 |
+
).images[0]
|
731 |
+
)
|
732 |
+
else:
|
733 |
+
real_images.append(
|
734 |
+
pipe(
|
735 |
+
real_prompt,
|
736 |
+
input_id_images=input_id_images,
|
737 |
+
num_inference_steps=num_steps,
|
738 |
+
guidance_scale=guidance_scale,
|
739 |
+
start_merge_step=start_merge_step,
|
740 |
+
height=height,
|
741 |
+
width=width,
|
742 |
+
negative_prompt=negative_prompt,
|
743 |
+
generator=generator,
|
744 |
+
).images[0]
|
745 |
+
)
|
746 |
+
|
747 |
+
total_results = [real_images[-1]] + total_results
|
748 |
+
|
749 |
+
captions = clipped_prompts
|
750 |
+
captions = [caption.replace("[NC]", "") for caption in captions]
|
751 |
+
captions = [
|
752 |
+
caption.split("#")[-1].strip() if "#" in caption else caption.strip()
|
753 |
+
for caption in captions
|
754 |
+
]
|
755 |
+
|
756 |
+
comic = get_comic(
|
757 |
+
id_images + real_images,
|
758 |
+
comic_style,
|
759 |
+
captions=captions,
|
760 |
+
font=ImageFont.truetype("./fonts/Inkfree.ttf", int(45)),
|
761 |
+
)
|
762 |
+
|
763 |
+
extension = output_format.lower()
|
764 |
+
extension = "jpeg" if extension == "jpg" else extension
|
765 |
+
comic_out = f"/tmp/comic.{extension}"
|
766 |
+
comic[0].save(comic_out)
|
767 |
+
|
768 |
+
save_params = {"format": extension.upper()}
|
769 |
+
if not output_format == "png":
|
770 |
+
save_params["quality"] = output_quality
|
771 |
+
save_params["optimize"] = True
|
772 |
+
|
773 |
+
output_paths = []
|
774 |
+
for index, sample in enumerate(total_results[::-1]):
|
775 |
+
output_filename = f"/tmp/out-{index}.{extension}"
|
776 |
+
sample.save(output_filename, **save_params)
|
777 |
+
output_paths.append(Path(output_filename))
|
778 |
+
|
779 |
+
del pipe
|
780 |
+
|
781 |
+
return ModelOutput(comic=Path(comic_out), individual_images=output_paths)
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.22.0
|
2 |
+
xformers==0.0.20
|
3 |
+
torch==2.0.1
|
4 |
+
torchvision==0.15.2
|
5 |
+
diffusers==0.25.0
|
6 |
+
transformers==4.36.2
|
7 |
+
huggingface-hub==0.20.2
|
8 |
+
spaces==0.19.4
|
9 |
+
numpy
|
10 |
+
accelerate
|
11 |
+
safetensors
|
12 |
+
omegaconf
|
13 |
+
peft
|
14 |
+
httpx==0.27.0
|
15 |
+
safetensors==0.4.0
|
results_examples/image1.png
ADDED
Git LFS Details
|
update.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Update History
|
2 |
+
|
3 |
+
### Update 2024-05-08
|
4 |
+
|
5 |
+
- Support [NC] in Ref Image Model (Photomaker work best in 1024x1024 but may cost a lot of GPU memory, I recommend you to use the res. as larger as possible)
|
6 |
+
|
7 |
+
<img src="results_examples/image1.png" height=100>
|
8 |
+
|
9 |
+
- Merge Push by @cryptowooser to support lastest pillow. But you may be updated pillow if you using the old version.
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
### Todo
|
14 |
+
|
15 |
+
- Support add captions on all images for the classical commic Typesetting Style
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
### Welcome to contribute
|
21 |
+
|
22 |
+
- Various layout styles.
|
utils/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .model import PhotoMakerIDEncoder
|
2 |
+
from .pipeline import PhotoMakerStableDiffusionXLPipeline
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"PhotoMakerIDEncoder",
|
6 |
+
"PhotoMakerStableDiffusionXLPipeline",
|
7 |
+
]
|
utils/gradio_utils.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import random
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
class SpatialAttnProcessor2_0(torch.nn.Module):
|
8 |
+
r"""
|
9 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
10 |
+
Args:
|
11 |
+
hidden_size (`int`):
|
12 |
+
The hidden size of the attention layer.
|
13 |
+
cross_attention_dim (`int`):
|
14 |
+
The number of channels in the `encoder_hidden_states`.
|
15 |
+
text_context_len (`int`, defaults to 77):
|
16 |
+
The context length of the text features.
|
17 |
+
scale (`float`, defaults to 1.0):
|
18 |
+
the weight scale of image prompt.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16):
|
22 |
+
super().__init__()
|
23 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
24 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
25 |
+
self.device = device
|
26 |
+
self.dtype = dtype
|
27 |
+
self.hidden_size = hidden_size
|
28 |
+
self.cross_attention_dim = cross_attention_dim
|
29 |
+
self.total_length = id_length + 1
|
30 |
+
self.id_length = id_length
|
31 |
+
self.id_bank = {}
|
32 |
+
|
33 |
+
def __call__(
|
34 |
+
self,
|
35 |
+
attn,
|
36 |
+
hidden_states,
|
37 |
+
encoder_hidden_states=None,
|
38 |
+
attention_mask=None,
|
39 |
+
temb=None):
|
40 |
+
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
|
41 |
+
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
|
42 |
+
# 生成一个0到1之间的随机数
|
43 |
+
global total_count,attn_count,cur_step,mask256,mask1024,mask4096
|
44 |
+
global sa16, sa32, sa64
|
45 |
+
global write
|
46 |
+
if write:
|
47 |
+
self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]
|
48 |
+
else:
|
49 |
+
encoder_hidden_states = torch.cat(self.id_bank[cur_step][0],hidden_states[:1],self.id_bank[cur_step][1],hidden_states[1:])
|
50 |
+
# 判断随机数是否大于0.5
|
51 |
+
if cur_step <5:
|
52 |
+
hidden_states = self.__call2__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
|
53 |
+
else: # 256 1024 4096
|
54 |
+
random_number = random.random()
|
55 |
+
if cur_step <20:
|
56 |
+
rand_num = 0.3
|
57 |
+
else:
|
58 |
+
rand_num = 0.1
|
59 |
+
if random_number > rand_num:
|
60 |
+
if not write:
|
61 |
+
if hidden_states.shape[1] == 32* 32:
|
62 |
+
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
|
63 |
+
elif hidden_states.shape[1] ==16*16:
|
64 |
+
attention_mask = mask256[mask256.shape[0] // self.total_length * self.id_length:]
|
65 |
+
else:
|
66 |
+
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
|
67 |
+
else:
|
68 |
+
if hidden_states.shape[1] == 32* 32:
|
69 |
+
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length]
|
70 |
+
elif hidden_states.shape[1] ==16*16:
|
71 |
+
attention_mask = mask256[:mask256.shape[0] // self.total_length * self.id_length]
|
72 |
+
else:
|
73 |
+
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length]
|
74 |
+
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
|
75 |
+
else:
|
76 |
+
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
|
77 |
+
attn_count +=1
|
78 |
+
if attn_count == total_count:
|
79 |
+
attn_count = 0
|
80 |
+
cur_step += 1
|
81 |
+
mask256,mask1024,mask4096 = cal_attn_mask(self.total_length,self.id_length,sa16,sa32,sa64, device=self.device, dtype= self.dtype)
|
82 |
+
|
83 |
+
return hidden_states
|
84 |
+
def __call1__(
|
85 |
+
self,
|
86 |
+
attn,
|
87 |
+
hidden_states,
|
88 |
+
encoder_hidden_states=None,
|
89 |
+
attention_mask=None,
|
90 |
+
temb=None,
|
91 |
+
):
|
92 |
+
residual = hidden_states
|
93 |
+
if encoder_hidden_states is not None:
|
94 |
+
raise Exception("not implement")
|
95 |
+
if attn.spatial_norm is not None:
|
96 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
97 |
+
input_ndim = hidden_states.ndim
|
98 |
+
|
99 |
+
if input_ndim == 4:
|
100 |
+
total_batch_size, channel, height, width = hidden_states.shape
|
101 |
+
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
|
102 |
+
total_batch_size,nums_token,channel = hidden_states.shape
|
103 |
+
img_nums = total_batch_size//2
|
104 |
+
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)
|
105 |
+
|
106 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
107 |
+
|
108 |
+
if attn.group_norm is not None:
|
109 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
110 |
+
|
111 |
+
query = attn.to_q(hidden_states)
|
112 |
+
|
113 |
+
if encoder_hidden_states is None:
|
114 |
+
encoder_hidden_states = hidden_states # B, N, C
|
115 |
+
else:
|
116 |
+
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)
|
117 |
+
|
118 |
+
key = attn.to_k(encoder_hidden_states)
|
119 |
+
value = attn.to_v(encoder_hidden_states)
|
120 |
+
|
121 |
+
|
122 |
+
inner_dim = key.shape[-1]
|
123 |
+
head_dim = inner_dim // attn.heads
|
124 |
+
|
125 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
126 |
+
|
127 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
128 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
129 |
+
|
130 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
131 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
132 |
+
hidden_states = F.scaled_dot_product_attention(
|
133 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
134 |
+
)
|
135 |
+
|
136 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
137 |
+
hidden_states = hidden_states.to(query.dtype)
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
# linear proj
|
142 |
+
hidden_states = attn.to_out[0](hidden_states)
|
143 |
+
# dropout
|
144 |
+
hidden_states = attn.to_out[1](hidden_states)
|
145 |
+
|
146 |
+
# if input_ndim == 4:
|
147 |
+
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
148 |
+
|
149 |
+
# if attn.residual_connection:
|
150 |
+
# tile_hidden_states = tile_hidden_states + residual
|
151 |
+
|
152 |
+
if input_ndim == 4:
|
153 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
|
154 |
+
if attn.residual_connection:
|
155 |
+
hidden_states = hidden_states + residual
|
156 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
157 |
+
|
158 |
+
return hidden_states
|
159 |
+
def __call2__(
|
160 |
+
self,
|
161 |
+
attn,
|
162 |
+
hidden_states,
|
163 |
+
encoder_hidden_states=None,
|
164 |
+
attention_mask=None,
|
165 |
+
temb=None):
|
166 |
+
residual = hidden_states
|
167 |
+
|
168 |
+
if attn.spatial_norm is not None:
|
169 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
170 |
+
|
171 |
+
input_ndim = hidden_states.ndim
|
172 |
+
|
173 |
+
if input_ndim == 4:
|
174 |
+
batch_size, channel, height, width = hidden_states.shape
|
175 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
176 |
+
|
177 |
+
batch_size, sequence_length, _ = (
|
178 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
179 |
+
)
|
180 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
181 |
+
|
182 |
+
if attn.group_norm is not None:
|
183 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
184 |
+
|
185 |
+
query = attn.to_q(hidden_states)
|
186 |
+
|
187 |
+
if encoder_hidden_states is None:
|
188 |
+
encoder_hidden_states = hidden_states
|
189 |
+
elif attn.norm_cross:
|
190 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
191 |
+
|
192 |
+
key = attn.to_k(encoder_hidden_states)
|
193 |
+
value = attn.to_v(encoder_hidden_states)
|
194 |
+
|
195 |
+
query = attn.head_to_batch_dim(query)
|
196 |
+
key = attn.head_to_batch_dim(key)
|
197 |
+
value = attn.head_to_batch_dim(value)
|
198 |
+
|
199 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
200 |
+
hidden_states = torch.bmm(attention_probs, value)
|
201 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
202 |
+
|
203 |
+
# linear proj
|
204 |
+
hidden_states = attn.to_out[0](hidden_states)
|
205 |
+
# dropout
|
206 |
+
hidden_states = attn.to_out[1](hidden_states)
|
207 |
+
|
208 |
+
if input_ndim == 4:
|
209 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
210 |
+
|
211 |
+
if attn.residual_connection:
|
212 |
+
hidden_states = hidden_states + residual
|
213 |
+
|
214 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
215 |
+
|
216 |
+
return hidden_states
|
217 |
+
|
218 |
+
|
219 |
+
def cal_attn_mask(total_length,id_length,sa16,sa32,sa64,device="cuda",dtype= torch.float16):
|
220 |
+
bool_matrix256 = torch.rand((1, total_length * 256),device = device,dtype = dtype) < sa16
|
221 |
+
bool_matrix1024 = torch.rand((1, total_length * 1024),device = device,dtype = dtype) < sa32
|
222 |
+
bool_matrix4096 = torch.rand((1, total_length * 4096),device = device,dtype = dtype) < sa64
|
223 |
+
bool_matrix256 = bool_matrix256.repeat(total_length,1)
|
224 |
+
bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
|
225 |
+
bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
|
226 |
+
for i in range(total_length):
|
227 |
+
bool_matrix256[i:i+1,id_length*256:] = False
|
228 |
+
bool_matrix1024[i:i+1,id_length*1024:] = False
|
229 |
+
bool_matrix4096[i:i+1,id_length*4096:] = False
|
230 |
+
bool_matrix256[i:i+1,i*256:(i+1)*256] = True
|
231 |
+
bool_matrix1024[i:i+1,i*1024:(i+1)*1024] = True
|
232 |
+
bool_matrix4096[i:i+1,i*4096:(i+1)*4096] = True
|
233 |
+
mask256 = bool_matrix256.unsqueeze(1).repeat(1,256,1).reshape(-1,total_length * 256)
|
234 |
+
mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,1024,1).reshape(-1,total_length * 1024)
|
235 |
+
mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,4096,1).reshape(-1,total_length * 4096)
|
236 |
+
return mask256,mask1024,mask4096
|
237 |
+
|
238 |
+
def cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16):
|
239 |
+
nums_1024 = (height // 32) * (width // 32)
|
240 |
+
nums_4096 = (height // 16) * (width // 16)
|
241 |
+
bool_matrix1024 = torch.rand((1, total_length * nums_1024),device = device,dtype = dtype) < sa32
|
242 |
+
bool_matrix4096 = torch.rand((1, total_length * nums_4096),device = device,dtype = dtype) < sa64
|
243 |
+
bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
|
244 |
+
bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
|
245 |
+
for i in range(total_length):
|
246 |
+
bool_matrix1024[i:i+1,id_length*nums_1024:] = False
|
247 |
+
bool_matrix4096[i:i+1,id_length*nums_4096:] = False
|
248 |
+
bool_matrix1024[i:i+1,i*nums_1024:(i+1)*nums_1024] = True
|
249 |
+
bool_matrix4096[i:i+1,i*nums_4096:(i+1)*nums_4096] = True
|
250 |
+
mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,nums_1024,1).reshape(-1,total_length * nums_1024)
|
251 |
+
mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,nums_4096,1).reshape(-1,total_length * nums_4096)
|
252 |
+
return mask1024,mask4096
|
253 |
+
|
254 |
+
|
255 |
+
def cal_attn_indice_xl_effcient_memory(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16):
|
256 |
+
nums_1024 = (height // 32) * (width // 32)
|
257 |
+
nums_4096 = (height // 16) * (width // 16)
|
258 |
+
bool_matrix1024 = torch.rand((total_length,nums_1024),device = device,dtype = dtype) < sa32
|
259 |
+
bool_matrix4096 = torch.rand((total_length,nums_4096),device = device,dtype = dtype) < sa64
|
260 |
+
# 用nonzero()函数获取所有为True的值的索引
|
261 |
+
indices1024 = [torch.nonzero(bool_matrix1024[i], as_tuple=True)[0] for i in range(total_length)]
|
262 |
+
indices4096 = [torch.nonzero(bool_matrix4096[i], as_tuple=True)[0] for i in range(total_length)]
|
263 |
+
|
264 |
+
return indices1024,indices4096
|
265 |
+
|
266 |
+
|
267 |
+
class AttnProcessor(nn.Module):
|
268 |
+
r"""
|
269 |
+
Default processor for performing attention-related computations.
|
270 |
+
"""
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
hidden_size=None,
|
274 |
+
cross_attention_dim=None,
|
275 |
+
):
|
276 |
+
super().__init__()
|
277 |
+
|
278 |
+
def __call__(
|
279 |
+
self,
|
280 |
+
attn,
|
281 |
+
hidden_states,
|
282 |
+
encoder_hidden_states=None,
|
283 |
+
attention_mask=None,
|
284 |
+
temb=None,
|
285 |
+
):
|
286 |
+
residual = hidden_states
|
287 |
+
|
288 |
+
if attn.spatial_norm is not None:
|
289 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
290 |
+
|
291 |
+
input_ndim = hidden_states.ndim
|
292 |
+
|
293 |
+
if input_ndim == 4:
|
294 |
+
batch_size, channel, height, width = hidden_states.shape
|
295 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
296 |
+
|
297 |
+
batch_size, sequence_length, _ = (
|
298 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
299 |
+
)
|
300 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
301 |
+
|
302 |
+
if attn.group_norm is not None:
|
303 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
304 |
+
|
305 |
+
query = attn.to_q(hidden_states)
|
306 |
+
|
307 |
+
if encoder_hidden_states is None:
|
308 |
+
encoder_hidden_states = hidden_states
|
309 |
+
elif attn.norm_cross:
|
310 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
311 |
+
|
312 |
+
key = attn.to_k(encoder_hidden_states)
|
313 |
+
value = attn.to_v(encoder_hidden_states)
|
314 |
+
|
315 |
+
query = attn.head_to_batch_dim(query)
|
316 |
+
key = attn.head_to_batch_dim(key)
|
317 |
+
value = attn.head_to_batch_dim(value)
|
318 |
+
|
319 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
320 |
+
hidden_states = torch.bmm(attention_probs, value)
|
321 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
322 |
+
|
323 |
+
# linear proj
|
324 |
+
hidden_states = attn.to_out[0](hidden_states)
|
325 |
+
# dropout
|
326 |
+
hidden_states = attn.to_out[1](hidden_states)
|
327 |
+
|
328 |
+
if input_ndim == 4:
|
329 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
330 |
+
|
331 |
+
if attn.residual_connection:
|
332 |
+
hidden_states = hidden_states + residual
|
333 |
+
|
334 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
335 |
+
|
336 |
+
return hidden_states
|
337 |
+
|
338 |
+
|
339 |
+
class AttnProcessor2_0(torch.nn.Module):
|
340 |
+
r"""
|
341 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
342 |
+
"""
|
343 |
+
def __init__(
|
344 |
+
self,
|
345 |
+
hidden_size=None,
|
346 |
+
cross_attention_dim=None,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
350 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
351 |
+
|
352 |
+
def __call__(
|
353 |
+
self,
|
354 |
+
attn,
|
355 |
+
hidden_states,
|
356 |
+
encoder_hidden_states=None,
|
357 |
+
attention_mask=None,
|
358 |
+
temb=None,
|
359 |
+
):
|
360 |
+
residual = hidden_states
|
361 |
+
|
362 |
+
if attn.spatial_norm is not None:
|
363 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
364 |
+
|
365 |
+
input_ndim = hidden_states.ndim
|
366 |
+
|
367 |
+
if input_ndim == 4:
|
368 |
+
batch_size, channel, height, width = hidden_states.shape
|
369 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
370 |
+
|
371 |
+
batch_size, sequence_length, _ = (
|
372 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
373 |
+
)
|
374 |
+
|
375 |
+
if attention_mask is not None:
|
376 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
377 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
378 |
+
# (batch, heads, source_length, target_length)
|
379 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
380 |
+
|
381 |
+
if attn.group_norm is not None:
|
382 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
383 |
+
|
384 |
+
query = attn.to_q(hidden_states)
|
385 |
+
|
386 |
+
if encoder_hidden_states is None:
|
387 |
+
encoder_hidden_states = hidden_states
|
388 |
+
elif attn.norm_cross:
|
389 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
390 |
+
|
391 |
+
key = attn.to_k(encoder_hidden_states)
|
392 |
+
value = attn.to_v(encoder_hidden_states)
|
393 |
+
|
394 |
+
inner_dim = key.shape[-1]
|
395 |
+
head_dim = inner_dim // attn.heads
|
396 |
+
|
397 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
398 |
+
|
399 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
400 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
401 |
+
|
402 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
403 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
404 |
+
hidden_states = F.scaled_dot_product_attention(
|
405 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
406 |
+
)
|
407 |
+
|
408 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
409 |
+
hidden_states = hidden_states.to(query.dtype)
|
410 |
+
|
411 |
+
# linear proj
|
412 |
+
hidden_states = attn.to_out[0](hidden_states)
|
413 |
+
# dropout
|
414 |
+
hidden_states = attn.to_out[1](hidden_states)
|
415 |
+
|
416 |
+
if input_ndim == 4:
|
417 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
418 |
+
|
419 |
+
if attn.residual_connection:
|
420 |
+
hidden_states = hidden_states + residual
|
421 |
+
|
422 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
423 |
+
|
424 |
+
return hidden_states
|
425 |
+
|
426 |
+
|
427 |
+
def is_torch2_available():
|
428 |
+
return hasattr(F, "scaled_dot_product_attention")
|
utils/load_models_utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline
|
4 |
+
from utils import PhotoMakerStableDiffusionXLPipeline
|
5 |
+
import os
|
6 |
+
|
7 |
+
def get_models_dict():
|
8 |
+
# 打开并读取YAML文件
|
9 |
+
with open('config/models.yaml', 'r') as stream:
|
10 |
+
try:
|
11 |
+
# 解析YAML文件内容
|
12 |
+
data = yaml.safe_load(stream)
|
13 |
+
|
14 |
+
# 此时 'data' 是一个Python字典,里面包含了YAML文件的所有数据
|
15 |
+
print(data)
|
16 |
+
return data
|
17 |
+
|
18 |
+
except yaml.YAMLError as exc:
|
19 |
+
# 如果在解析过程中发生了错误,打印异常信息
|
20 |
+
print(exc)
|
21 |
+
|
22 |
+
def load_models(model_info,device,photomaker_path):
|
23 |
+
path = model_info["path"]
|
24 |
+
single_files = model_info["single_files"]
|
25 |
+
use_safetensors = model_info["use_safetensors"]
|
26 |
+
model_type = model_info["model_type"]
|
27 |
+
|
28 |
+
if model_type == "original":
|
29 |
+
if single_files:
|
30 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
31 |
+
path,
|
32 |
+
torch_dtype=torch.float16
|
33 |
+
)
|
34 |
+
else:
|
35 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=use_safetensors)
|
36 |
+
pipe = pipe.to(device)
|
37 |
+
elif model_type == "Photomaker":
|
38 |
+
if single_files:
|
39 |
+
print("loading from a single_files")
|
40 |
+
pipe = PhotoMakerStableDiffusionXLPipeline.from_single_file(
|
41 |
+
path,
|
42 |
+
torch_dtype=torch.float16
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
|
46 |
+
path, torch_dtype=torch.float16, use_safetensors=use_safetensors)
|
47 |
+
pipe = pipe.to(device)
|
48 |
+
pipe.load_photomaker_adapter(
|
49 |
+
os.path.dirname(photomaker_path),
|
50 |
+
subfolder="",
|
51 |
+
weight_name=os.path.basename(photomaker_path),
|
52 |
+
trigger_word="img" # define the trigger word
|
53 |
+
)
|
54 |
+
pipe.fuse_lora()
|
55 |
+
else:
|
56 |
+
raise NotImplementedError("You should choice between original and Photomaker!",f"But you choice {model_type}")
|
57 |
+
return pipe
|
utils/model.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Merge image encoder and fuse module to create an ID Encoder
|
2 |
+
# send multiple ID images, we can directly obtain the updated text encoder containing a stacked ID embedding
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection
|
7 |
+
from transformers.models.clip.configuration_clip import CLIPVisionConfig
|
8 |
+
from transformers import PretrainedConfig
|
9 |
+
|
10 |
+
VISION_CONFIG_DICT = {
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"num_attention_heads": 16,
|
14 |
+
"num_hidden_layers": 24,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 768
|
17 |
+
}
|
18 |
+
|
19 |
+
class MLP(nn.Module):
|
20 |
+
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True):
|
21 |
+
super().__init__()
|
22 |
+
if use_residual:
|
23 |
+
assert in_dim == out_dim
|
24 |
+
self.layernorm = nn.LayerNorm(in_dim)
|
25 |
+
self.fc1 = nn.Linear(in_dim, hidden_dim)
|
26 |
+
self.fc2 = nn.Linear(hidden_dim, out_dim)
|
27 |
+
self.use_residual = use_residual
|
28 |
+
self.act_fn = nn.GELU()
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
residual = x
|
32 |
+
x = self.layernorm(x)
|
33 |
+
x = self.fc1(x)
|
34 |
+
x = self.act_fn(x)
|
35 |
+
x = self.fc2(x)
|
36 |
+
if self.use_residual:
|
37 |
+
x = x + residual
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
class FuseModule(nn.Module):
|
42 |
+
def __init__(self, embed_dim):
|
43 |
+
super().__init__()
|
44 |
+
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False)
|
45 |
+
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True)
|
46 |
+
self.layer_norm = nn.LayerNorm(embed_dim)
|
47 |
+
|
48 |
+
def fuse_fn(self, prompt_embeds, id_embeds):
|
49 |
+
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
|
50 |
+
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
|
51 |
+
stacked_id_embeds = self.mlp2(stacked_id_embeds)
|
52 |
+
stacked_id_embeds = self.layer_norm(stacked_id_embeds)
|
53 |
+
return stacked_id_embeds
|
54 |
+
|
55 |
+
def forward(
|
56 |
+
self,
|
57 |
+
prompt_embeds,
|
58 |
+
id_embeds,
|
59 |
+
class_tokens_mask,
|
60 |
+
) -> torch.Tensor:
|
61 |
+
# id_embeds shape: [b, max_num_inputs, 1, 2048]
|
62 |
+
id_embeds = id_embeds.to(prompt_embeds.dtype)
|
63 |
+
num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
|
64 |
+
batch_size, max_num_inputs = id_embeds.shape[:2]
|
65 |
+
# seq_length: 77
|
66 |
+
seq_length = prompt_embeds.shape[1]
|
67 |
+
# flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
|
68 |
+
flat_id_embeds = id_embeds.view(
|
69 |
+
-1, id_embeds.shape[-2], id_embeds.shape[-1]
|
70 |
+
)
|
71 |
+
# valid_id_mask [b*max_num_inputs]
|
72 |
+
valid_id_mask = (
|
73 |
+
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
|
74 |
+
< num_inputs[:, None]
|
75 |
+
)
|
76 |
+
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
|
77 |
+
|
78 |
+
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
|
79 |
+
class_tokens_mask = class_tokens_mask.view(-1)
|
80 |
+
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
|
81 |
+
# slice out the image token embeddings
|
82 |
+
image_token_embeds = prompt_embeds[class_tokens_mask]
|
83 |
+
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
|
84 |
+
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
|
85 |
+
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
|
86 |
+
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
|
87 |
+
return updated_prompt_embeds
|
88 |
+
|
89 |
+
class PhotoMakerIDEncoder(CLIPVisionModelWithProjection):
|
90 |
+
def __init__(self):
|
91 |
+
super().__init__(CLIPVisionConfig(**VISION_CONFIG_DICT))
|
92 |
+
self.visual_projection_2 = nn.Linear(1024, 1280, bias=False)
|
93 |
+
self.fuse_module = FuseModule(2048)
|
94 |
+
|
95 |
+
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
|
96 |
+
b, num_inputs, c, h, w = id_pixel_values.shape
|
97 |
+
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
|
98 |
+
|
99 |
+
shared_id_embeds = self.vision_model(id_pixel_values)[1]
|
100 |
+
id_embeds = self.visual_projection(shared_id_embeds)
|
101 |
+
id_embeds_2 = self.visual_projection_2(shared_id_embeds)
|
102 |
+
|
103 |
+
id_embeds = id_embeds.view(b, num_inputs, 1, -1)
|
104 |
+
id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)
|
105 |
+
|
106 |
+
id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)
|
107 |
+
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
|
108 |
+
|
109 |
+
return updated_prompt_embeds
|
110 |
+
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
PhotoMakerIDEncoder()
|
utils/pipeline.py
ADDED
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
2 |
+
from collections import OrderedDict
|
3 |
+
import os
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torchvision import transforms as T
|
9 |
+
|
10 |
+
from safetensors import safe_open
|
11 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
12 |
+
from transformers import CLIPImageProcessor, CLIPTokenizer
|
13 |
+
from diffusers import StableDiffusionXLPipeline
|
14 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
15 |
+
from diffusers.utils import (
|
16 |
+
_get_model_file,
|
17 |
+
is_transformers_available,
|
18 |
+
logging,
|
19 |
+
)
|
20 |
+
|
21 |
+
from . import PhotoMakerIDEncoder
|
22 |
+
|
23 |
+
PipelineImageInput = Union[
|
24 |
+
PIL.Image.Image,
|
25 |
+
torch.FloatTensor,
|
26 |
+
List[PIL.Image.Image],
|
27 |
+
List[torch.FloatTensor],
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
class PhotoMakerStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
32 |
+
@validate_hf_hub_args
|
33 |
+
def load_photomaker_adapter(
|
34 |
+
self,
|
35 |
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
36 |
+
weight_name: str,
|
37 |
+
subfolder: str = '',
|
38 |
+
trigger_word: str = 'img',
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
"""
|
42 |
+
Parameters:
|
43 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
44 |
+
Can be either:
|
45 |
+
|
46 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
47 |
+
the Hub.
|
48 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
49 |
+
with [`ModelMixin.save_pretrained`].
|
50 |
+
- A [torch state
|
51 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
52 |
+
|
53 |
+
weight_name (`str`):
|
54 |
+
The weight name NOT the path to the weight.
|
55 |
+
|
56 |
+
subfolder (`str`, defaults to `""`):
|
57 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
58 |
+
|
59 |
+
trigger_word (`str`, *optional*, defaults to `"img"`):
|
60 |
+
The trigger word is used to identify the position of class word in the text prompt,
|
61 |
+
and it is recommended not to set it as a common word.
|
62 |
+
This trigger word must be placed after the class word when used, otherwise, it will affect the performance of the personalized generation.
|
63 |
+
"""
|
64 |
+
|
65 |
+
# Load the main state dict first.
|
66 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
67 |
+
force_download = kwargs.pop("force_download", False)
|
68 |
+
resume_download = kwargs.pop("resume_download", False)
|
69 |
+
proxies = kwargs.pop("proxies", None)
|
70 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
71 |
+
token = kwargs.pop("token", None)
|
72 |
+
revision = kwargs.pop("revision", None)
|
73 |
+
|
74 |
+
user_agent = {
|
75 |
+
"file_type": "attn_procs_weights",
|
76 |
+
"framework": "pytorch",
|
77 |
+
}
|
78 |
+
|
79 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
80 |
+
model_file = _get_model_file(
|
81 |
+
pretrained_model_name_or_path_or_dict,
|
82 |
+
weights_name=weight_name,
|
83 |
+
cache_dir=cache_dir,
|
84 |
+
force_download=force_download,
|
85 |
+
resume_download=resume_download,
|
86 |
+
proxies=proxies,
|
87 |
+
local_files_only=local_files_only,
|
88 |
+
token=token,
|
89 |
+
revision=revision,
|
90 |
+
subfolder=subfolder,
|
91 |
+
user_agent=user_agent,
|
92 |
+
)
|
93 |
+
if weight_name.endswith(".safetensors"):
|
94 |
+
state_dict = {"id_encoder": {}, "lora_weights": {}}
|
95 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
96 |
+
for key in f.keys():
|
97 |
+
if key.startswith("id_encoder."):
|
98 |
+
state_dict["id_encoder"][key.replace("id_encoder.", "")] = f.get_tensor(key)
|
99 |
+
elif key.startswith("lora_weights."):
|
100 |
+
state_dict["lora_weights"][key.replace("lora_weights.", "")] = f.get_tensor(key)
|
101 |
+
else:
|
102 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
103 |
+
else:
|
104 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
105 |
+
|
106 |
+
keys = list(state_dict.keys())
|
107 |
+
if keys != ["id_encoder", "lora_weights"]:
|
108 |
+
raise ValueError("Required keys are (`id_encoder` and `lora_weights`) missing from the state dict.")
|
109 |
+
|
110 |
+
self.trigger_word = trigger_word
|
111 |
+
# load finetuned CLIP image encoder and fuse module here if it has not been registered to the pipeline yet
|
112 |
+
print(f"Loading PhotoMaker components [1] id_encoder from [{pretrained_model_name_or_path_or_dict}]...")
|
113 |
+
id_encoder = PhotoMakerIDEncoder()
|
114 |
+
id_encoder.load_state_dict(state_dict["id_encoder"], strict=True)
|
115 |
+
id_encoder = id_encoder.to(self.device, dtype=self.unet.dtype)
|
116 |
+
self.id_encoder = id_encoder
|
117 |
+
self.id_image_processor = CLIPImageProcessor()
|
118 |
+
|
119 |
+
# load lora into models
|
120 |
+
print(f"Loading PhotoMaker components [2] lora_weights from [{pretrained_model_name_or_path_or_dict}]")
|
121 |
+
self.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker")
|
122 |
+
|
123 |
+
# Add trigger word token
|
124 |
+
if self.tokenizer is not None:
|
125 |
+
self.tokenizer.add_tokens([self.trigger_word], special_tokens=True)
|
126 |
+
|
127 |
+
self.tokenizer_2.add_tokens([self.trigger_word], special_tokens=True)
|
128 |
+
|
129 |
+
|
130 |
+
def encode_prompt_with_trigger_word(
|
131 |
+
self,
|
132 |
+
prompt: str,
|
133 |
+
prompt_2: Optional[str] = None,
|
134 |
+
num_id_images: int = 1,
|
135 |
+
device: Optional[torch.device] = None,
|
136 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
137 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
138 |
+
class_tokens_mask: Optional[torch.LongTensor] = None,
|
139 |
+
nc_flag: bool = False,
|
140 |
+
):
|
141 |
+
device = device or self._execution_device
|
142 |
+
|
143 |
+
if prompt is not None and isinstance(prompt, str):
|
144 |
+
batch_size = 1
|
145 |
+
elif prompt is not None and isinstance(prompt, list):
|
146 |
+
batch_size = len(prompt)
|
147 |
+
else:
|
148 |
+
batch_size = prompt_embeds.shape[0]
|
149 |
+
|
150 |
+
# Find the token id of the trigger word
|
151 |
+
image_token_id = self.tokenizer_2.convert_tokens_to_ids(self.trigger_word)
|
152 |
+
|
153 |
+
# Define tokenizers and text encoders
|
154 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
155 |
+
text_encoders = (
|
156 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
157 |
+
)
|
158 |
+
|
159 |
+
if prompt_embeds is None:
|
160 |
+
prompt_2 = prompt_2 or prompt
|
161 |
+
prompt_embeds_list = []
|
162 |
+
prompts = [prompt, prompt_2]
|
163 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
164 |
+
input_ids = tokenizer.encode(prompt) # TODO: batch encode
|
165 |
+
clean_index = 0
|
166 |
+
clean_input_ids = []
|
167 |
+
class_token_index = []
|
168 |
+
# Find out the corresponding class word token based on the newly added trigger word token
|
169 |
+
for i, token_id in enumerate(input_ids):
|
170 |
+
if token_id == image_token_id:
|
171 |
+
class_token_index.append(clean_index - 1)
|
172 |
+
else:
|
173 |
+
clean_input_ids.append(token_id)
|
174 |
+
clean_index += 1
|
175 |
+
if nc_flag:
|
176 |
+
return None, None, None
|
177 |
+
if len(class_token_index) > 1:
|
178 |
+
raise ValueError(
|
179 |
+
f"PhotoMaker currently does not support multiple trigger words in a single prompt.\
|
180 |
+
Trigger word: {self.trigger_word}, Prompt: {prompt}."
|
181 |
+
)
|
182 |
+
elif len(class_token_index) == 0 and not nc_flag:
|
183 |
+
raise ValueError(
|
184 |
+
f"PhotoMaker currently does not support multiple trigger words in a single prompt.\
|
185 |
+
Trigger word: {self.trigger_word}, Prompt: {prompt}."
|
186 |
+
)
|
187 |
+
class_token_index = class_token_index[0]
|
188 |
+
|
189 |
+
# Expand the class word token and corresponding mask
|
190 |
+
class_token = clean_input_ids[class_token_index]
|
191 |
+
clean_input_ids = clean_input_ids[:class_token_index] + [class_token] * num_id_images + \
|
192 |
+
clean_input_ids[class_token_index+1:]
|
193 |
+
|
194 |
+
# Truncation or padding
|
195 |
+
max_len = tokenizer.model_max_length
|
196 |
+
if len(clean_input_ids) > max_len:
|
197 |
+
clean_input_ids = clean_input_ids[:max_len]
|
198 |
+
else:
|
199 |
+
clean_input_ids = clean_input_ids + [tokenizer.pad_token_id] * (
|
200 |
+
max_len - len(clean_input_ids)
|
201 |
+
)
|
202 |
+
|
203 |
+
class_tokens_mask = [True if class_token_index <= i < class_token_index+num_id_images else False \
|
204 |
+
for i in range(len(clean_input_ids))]
|
205 |
+
|
206 |
+
clean_input_ids = torch.tensor(clean_input_ids, dtype=torch.long).unsqueeze(0)
|
207 |
+
class_tokens_mask = torch.tensor(class_tokens_mask, dtype=torch.bool).unsqueeze(0)
|
208 |
+
|
209 |
+
prompt_embeds = text_encoder(
|
210 |
+
clean_input_ids.to(device),
|
211 |
+
output_hidden_states=True,
|
212 |
+
)
|
213 |
+
|
214 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
215 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
216 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
217 |
+
prompt_embeds_list.append(prompt_embeds)
|
218 |
+
|
219 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
220 |
+
|
221 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
222 |
+
class_tokens_mask = class_tokens_mask.to(device=device) # TODO: ignoring two-prompt case
|
223 |
+
|
224 |
+
return prompt_embeds, pooled_prompt_embeds, class_tokens_mask
|
225 |
+
|
226 |
+
@property
|
227 |
+
def interrupt(self):
|
228 |
+
return self._interrupt
|
229 |
+
|
230 |
+
@torch.no_grad()
|
231 |
+
def __call__(
|
232 |
+
self,
|
233 |
+
prompt: Union[str, List[str]] = None,
|
234 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
235 |
+
height: Optional[int] = None,
|
236 |
+
width: Optional[int] = None,
|
237 |
+
num_inference_steps: int = 50,
|
238 |
+
denoising_end: Optional[float] = None,
|
239 |
+
guidance_scale: float = 5.0,
|
240 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
241 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
242 |
+
num_images_per_prompt: Optional[int] = 1,
|
243 |
+
eta: float = 0.0,
|
244 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
245 |
+
latents: Optional[torch.FloatTensor] = None,
|
246 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
247 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
248 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
249 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
250 |
+
output_type: Optional[str] = "pil",
|
251 |
+
return_dict: bool = True,
|
252 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
253 |
+
guidance_rescale: float = 0.0,
|
254 |
+
original_size: Optional[Tuple[int, int]] = None,
|
255 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
256 |
+
target_size: Optional[Tuple[int, int]] = None,
|
257 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
258 |
+
callback_steps: int = 1,
|
259 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
260 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
261 |
+
# Added parameters (for PhotoMaker)
|
262 |
+
input_id_images: PipelineImageInput = None,
|
263 |
+
start_merge_step: int = 0, # TODO: change to `style_strength_ratio` in the future
|
264 |
+
class_tokens_mask: Optional[torch.LongTensor] = None,
|
265 |
+
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
266 |
+
pooled_prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
267 |
+
nc_flag = False,
|
268 |
+
):
|
269 |
+
r"""
|
270 |
+
Function invoked when calling the pipeline for generation.
|
271 |
+
Only the parameters introduced by PhotoMaker are discussed here.
|
272 |
+
For explanations of the previous parameters in StableDiffusionXLPipeline, please refer to https://github.com/huggingface/diffusers/blob/v0.25.0/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py
|
273 |
+
|
274 |
+
Args:
|
275 |
+
input_id_images (`PipelineImageInput`, *optional*):
|
276 |
+
Input ID Image to work with PhotoMaker.
|
277 |
+
class_tokens_mask (`torch.LongTensor`, *optional*):
|
278 |
+
Pre-generated class token. When the `prompt_embeds` parameter is provided in advance, it is necessary to prepare the `class_tokens_mask` beforehand for marking out the position of class word.
|
279 |
+
prompt_embeds_text_only (`torch.FloatTensor`, *optional*):
|
280 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
281 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
282 |
+
pooled_prompt_embeds_text_only (`torch.FloatTensor`, *optional*):
|
283 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
284 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
288 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
289 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
290 |
+
"""
|
291 |
+
# 0. Default height and width to unet
|
292 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
293 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
294 |
+
|
295 |
+
original_size = original_size or (height, width)
|
296 |
+
target_size = target_size or (height, width)
|
297 |
+
|
298 |
+
# 1. Check inputs. Raise error if not correct
|
299 |
+
self.check_inputs(
|
300 |
+
prompt,
|
301 |
+
prompt_2,
|
302 |
+
height,
|
303 |
+
width,
|
304 |
+
callback_steps,
|
305 |
+
negative_prompt,
|
306 |
+
negative_prompt_2,
|
307 |
+
prompt_embeds,
|
308 |
+
negative_prompt_embeds,
|
309 |
+
pooled_prompt_embeds,
|
310 |
+
negative_pooled_prompt_embeds,
|
311 |
+
callback_on_step_end_tensor_inputs,
|
312 |
+
)
|
313 |
+
|
314 |
+
self._interrupt = False
|
315 |
+
|
316 |
+
#
|
317 |
+
if prompt_embeds is not None and class_tokens_mask is None:
|
318 |
+
raise ValueError(
|
319 |
+
"If `prompt_embeds` are provided, `class_tokens_mask` also have to be passed. Make sure to generate `class_tokens_mask` from the same tokenizer that was used to generate `prompt_embeds`."
|
320 |
+
)
|
321 |
+
# check the input id images
|
322 |
+
if input_id_images is None:
|
323 |
+
raise ValueError(
|
324 |
+
"Provide `input_id_images`. Cannot leave `input_id_images` undefined for PhotoMaker pipeline."
|
325 |
+
)
|
326 |
+
if not isinstance(input_id_images, list):
|
327 |
+
input_id_images = [input_id_images]
|
328 |
+
|
329 |
+
# 2. Define call parameters
|
330 |
+
if prompt is not None and isinstance(prompt, str):
|
331 |
+
batch_size = 1
|
332 |
+
prompt = [prompt]
|
333 |
+
elif prompt is not None and isinstance(prompt, list):
|
334 |
+
batch_size = len(prompt)
|
335 |
+
else:
|
336 |
+
batch_size = prompt_embeds.shape[0]
|
337 |
+
|
338 |
+
device = self._execution_device
|
339 |
+
|
340 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
341 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
342 |
+
# corresponds to doing no classifier free guidance.
|
343 |
+
do_classifier_free_guidance = guidance_scale >= 1.0
|
344 |
+
|
345 |
+
assert do_classifier_free_guidance
|
346 |
+
|
347 |
+
# 3. Encode input prompt
|
348 |
+
num_id_images = len(input_id_images)
|
349 |
+
if isinstance(prompt, list):
|
350 |
+
prompt_arr = prompt
|
351 |
+
negative_prompt_embeds_arr = []
|
352 |
+
prompt_embeds_text_only_arr = []
|
353 |
+
prompt_embeds_arr = []
|
354 |
+
latents_arr = []
|
355 |
+
add_time_ids_arr = []
|
356 |
+
negative_pooled_prompt_embeds_arr = []
|
357 |
+
pooled_prompt_embeds_text_only_arr = []
|
358 |
+
pooled_prompt_embeds_arr = []
|
359 |
+
for prompt in prompt_arr:
|
360 |
+
(
|
361 |
+
prompt_embeds,
|
362 |
+
pooled_prompt_embeds,
|
363 |
+
class_tokens_mask,
|
364 |
+
) = self.encode_prompt_with_trigger_word(
|
365 |
+
prompt=prompt,
|
366 |
+
prompt_2=prompt_2,
|
367 |
+
device=device,
|
368 |
+
num_id_images=num_id_images,
|
369 |
+
prompt_embeds=prompt_embeds,
|
370 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
371 |
+
class_tokens_mask=class_tokens_mask,
|
372 |
+
nc_flag = nc_flag,
|
373 |
+
)
|
374 |
+
|
375 |
+
# 4. Encode input prompt without the trigger word for delayed conditioning
|
376 |
+
# encode, remove trigger word token, then decode
|
377 |
+
tokens_text_only = self.tokenizer.encode(prompt, add_special_tokens=False)
|
378 |
+
trigger_word_token = self.tokenizer.convert_tokens_to_ids(self.trigger_word)
|
379 |
+
if not nc_flag:
|
380 |
+
tokens_text_only.remove(trigger_word_token)
|
381 |
+
prompt_text_only = self.tokenizer.decode(tokens_text_only, add_special_tokens=False)
|
382 |
+
print(prompt_text_only)
|
383 |
+
(
|
384 |
+
prompt_embeds_text_only,
|
385 |
+
negative_prompt_embeds,
|
386 |
+
pooled_prompt_embeds_text_only, # TODO: replace the pooled_prompt_embeds with text only prompt
|
387 |
+
negative_pooled_prompt_embeds,
|
388 |
+
) = self.encode_prompt(
|
389 |
+
prompt=prompt_text_only,
|
390 |
+
prompt_2=prompt_2,
|
391 |
+
device=device,
|
392 |
+
num_images_per_prompt=num_images_per_prompt,
|
393 |
+
do_classifier_free_guidance=True,
|
394 |
+
negative_prompt=negative_prompt,
|
395 |
+
negative_prompt_2=negative_prompt_2,
|
396 |
+
prompt_embeds=prompt_embeds_text_only,
|
397 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
398 |
+
pooled_prompt_embeds=pooled_prompt_embeds_text_only,
|
399 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
400 |
+
)
|
401 |
+
|
402 |
+
# 5. Prepare the input ID images
|
403 |
+
dtype = next(self.id_encoder.parameters()).dtype
|
404 |
+
if not isinstance(input_id_images[0], torch.Tensor):
|
405 |
+
id_pixel_values = self.id_image_processor(input_id_images, return_tensors="pt").pixel_values
|
406 |
+
|
407 |
+
id_pixel_values = id_pixel_values.unsqueeze(0).to(device=device, dtype=dtype) # TODO: multiple prompts
|
408 |
+
|
409 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
410 |
+
if not nc_flag:
|
411 |
+
# 6. Get the update text embedding with the stacked ID embedding
|
412 |
+
prompt_embeds = self.id_encoder(id_pixel_values, prompt_embeds, class_tokens_mask)
|
413 |
+
|
414 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
415 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
416 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
417 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
418 |
+
bs_embed * num_images_per_prompt, -1
|
419 |
+
)
|
420 |
+
pooled_prompt_embeds_arr.append(pooled_prompt_embeds)
|
421 |
+
pooled_prompt_embeds = None
|
422 |
+
|
423 |
+
negative_prompt_embeds_arr.append(negative_prompt_embeds)
|
424 |
+
negative_prompt_embeds = None
|
425 |
+
negative_pooled_prompt_embeds_arr.append(negative_pooled_prompt_embeds)
|
426 |
+
negative_pooled_prompt_embeds = None
|
427 |
+
prompt_embeds_text_only_arr.append(prompt_embeds_text_only)
|
428 |
+
prompt_embeds_text_only = None
|
429 |
+
prompt_embeds_arr.append(prompt_embeds)
|
430 |
+
prompt_embeds = None
|
431 |
+
pooled_prompt_embeds_text_only_arr.append(pooled_prompt_embeds_text_only)
|
432 |
+
pooled_prompt_embeds_text_only = None
|
433 |
+
# 7. Prepare timesteps
|
434 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
435 |
+
timesteps = self.scheduler.timesteps
|
436 |
+
|
437 |
+
negative_prompt_embeds = torch.cat(negative_prompt_embeds_arr ,dim =0)
|
438 |
+
print(negative_prompt_embeds.shape)
|
439 |
+
if not nc_flag:
|
440 |
+
prompt_embeds = torch.cat(prompt_embeds_arr ,dim = 0)
|
441 |
+
print(prompt_embeds.shape)
|
442 |
+
pooled_prompt_embeds = torch.cat(pooled_prompt_embeds_arr,dim = 0)
|
443 |
+
print(pooled_prompt_embeds.shape)
|
444 |
+
|
445 |
+
prompt_embeds_text_only = torch.cat(prompt_embeds_text_only_arr ,dim = 0)
|
446 |
+
print(prompt_embeds_text_only.shape)
|
447 |
+
pooled_prompt_embeds_text_only = torch.cat(pooled_prompt_embeds_text_only_arr ,dim = 0)
|
448 |
+
print(pooled_prompt_embeds_text_only.shape)
|
449 |
+
|
450 |
+
negative_pooled_prompt_embeds = torch.cat(negative_pooled_prompt_embeds_arr ,dim = 0)
|
451 |
+
print(negative_pooled_prompt_embeds.shape)
|
452 |
+
# 8. Prepare latent variables
|
453 |
+
num_channels_latents = self.unet.config.in_channels
|
454 |
+
latents = self.prepare_latents(
|
455 |
+
batch_size * num_images_per_prompt,
|
456 |
+
num_channels_latents,
|
457 |
+
height,
|
458 |
+
width,
|
459 |
+
prompt_embeds.dtype if not nc_flag else prompt_embeds_text_only.dtype,
|
460 |
+
device,
|
461 |
+
generator,
|
462 |
+
latents,
|
463 |
+
)
|
464 |
+
|
465 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
466 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
467 |
+
|
468 |
+
# 10. Prepare added time ids & embeddings
|
469 |
+
if self.text_encoder_2 is None:
|
470 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
471 |
+
else:
|
472 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
473 |
+
|
474 |
+
add_time_ids = self._get_add_time_ids(
|
475 |
+
original_size,
|
476 |
+
crops_coords_top_left,
|
477 |
+
target_size,
|
478 |
+
dtype=prompt_embeds.dtype if not nc_flag else prompt_embeds_text_only.dtype,
|
479 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
480 |
+
)
|
481 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
482 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
483 |
+
|
484 |
+
|
485 |
+
print(latents.shape)
|
486 |
+
print(add_time_ids.shape)
|
487 |
+
|
488 |
+
# 11. Denoising loop
|
489 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
490 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
491 |
+
for i, t in enumerate(timesteps):
|
492 |
+
if self.interrupt:
|
493 |
+
continue
|
494 |
+
|
495 |
+
latent_model_input = (
|
496 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
497 |
+
)
|
498 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
499 |
+
|
500 |
+
if i <= start_merge_step or nc_flag:
|
501 |
+
current_prompt_embeds = torch.cat(
|
502 |
+
[negative_prompt_embeds, prompt_embeds_text_only], dim=0
|
503 |
+
)
|
504 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_text_only], dim=0)
|
505 |
+
else:
|
506 |
+
current_prompt_embeds = torch.cat(
|
507 |
+
[negative_prompt_embeds, prompt_embeds], dim=0
|
508 |
+
)
|
509 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
510 |
+
# predict the noise residual
|
511 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
512 |
+
# print(latent_model_input.shape)
|
513 |
+
# print(t)
|
514 |
+
# print(current_prompt_embeds.shape)
|
515 |
+
# print(add_text_embeds.shape)
|
516 |
+
# print(add_time_ids.shape)
|
517 |
+
#zeros_matrix =
|
518 |
+
#global_mask1024 = torch.cat([torch.randn(1, 1024, 1, 1, device=device) for random_number])
|
519 |
+
#global_mask4096 =
|
520 |
+
noise_pred = self.unet(
|
521 |
+
latent_model_input,
|
522 |
+
t,
|
523 |
+
encoder_hidden_states=current_prompt_embeds,
|
524 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
525 |
+
added_cond_kwargs=added_cond_kwargs,
|
526 |
+
return_dict=False,
|
527 |
+
)[0]
|
528 |
+
# print(noise_pred.shape)
|
529 |
+
# perform guidance
|
530 |
+
if do_classifier_free_guidance:
|
531 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
532 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
533 |
+
|
534 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
535 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
536 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
537 |
+
|
538 |
+
# compute the previous noisy sample x_t -> x_t-1
|
539 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
540 |
+
|
541 |
+
if callback_on_step_end is not None:
|
542 |
+
callback_kwargs = {}
|
543 |
+
for k in callback_on_step_end_tensor_inputs:
|
544 |
+
callback_kwargs[k] = locals()[k]
|
545 |
+
|
546 |
+
ck_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
547 |
+
|
548 |
+
latents = callback_outputs.pop("latents", latents)
|
549 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
550 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
551 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
552 |
+
# negative_pooled_prompt_embeds = callback_outputs.pop(
|
553 |
+
# "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
554 |
+
# )
|
555 |
+
# add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
556 |
+
# negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
557 |
+
|
558 |
+
# call the callback, if provided
|
559 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
560 |
+
progress_bar.update()
|
561 |
+
if callback is not None and i % callback_steps == 0:
|
562 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
563 |
+
callback(step_idx, t, latents)
|
564 |
+
|
565 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
566 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
567 |
+
self.upcast_vae()
|
568 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
569 |
+
|
570 |
+
if not output_type == "latent":
|
571 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
572 |
+
else:
|
573 |
+
image = latents
|
574 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
575 |
+
|
576 |
+
# apply watermark if available
|
577 |
+
# if self.watermark is not None:
|
578 |
+
# image = self.watermark.apply_watermark(image)
|
579 |
+
|
580 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
581 |
+
|
582 |
+
# Offload all models
|
583 |
+
self.maybe_free_model_hooks()
|
584 |
+
|
585 |
+
if not return_dict:
|
586 |
+
return (image,)
|
587 |
+
|
588 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
utils/style_template.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
style_list = [
|
2 |
+
{
|
3 |
+
"name": "(No style)",
|
4 |
+
"prompt": "{prompt}",
|
5 |
+
"negative_prompt": "",
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"name": "Japanese Anime",
|
9 |
+
"prompt": "anime artwork illustrating {prompt}. created by japanese anime studio. highly emotional. best quality, high resolution",
|
10 |
+
"negative_prompt": "low quality, low resolution"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"name": "Cinematic",
|
14 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
15 |
+
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"name": "Disney Charactor",
|
19 |
+
"prompt": "A Pixar animation character of {prompt} . pixar-style, studio anime, Disney, high-quality",
|
20 |
+
"negative_prompt": "lowres, bad anatomy, bad hands, text, bad eyes, bad arms, bad legs, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry, grayscale, noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo",
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"name": "Photographic",
|
24 |
+
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
25 |
+
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"name": "Comic book",
|
29 |
+
"prompt": "comic {prompt} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed",
|
30 |
+
"negative_prompt": "photograph, deformed, glitch, noisy, realistic, stock photo",
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"name": "Line art",
|
34 |
+
"prompt": "line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",
|
35 |
+
"negative_prompt": "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic",
|
36 |
+
}
|
37 |
+
]
|
38 |
+
|
39 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
utils/utils.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from email.mime import image
|
2 |
+
import torch
|
3 |
+
import base64
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image,ImageOps,ImageDraw, ImageFont
|
7 |
+
from io import BytesIO
|
8 |
+
import random
|
9 |
+
MAX_COLORS = 12
|
10 |
+
def get_random_bool():
|
11 |
+
return random.choice([True, False])
|
12 |
+
|
13 |
+
def add_white_border(input_image, border_width=10):
|
14 |
+
"""
|
15 |
+
为PIL图像添加指定宽度的白色边框。
|
16 |
+
|
17 |
+
:param input_image: PIL图像对象
|
18 |
+
:param border_width: 边框宽度(单位:像素)
|
19 |
+
:return: 带有白色边框的PIL图像对象
|
20 |
+
"""
|
21 |
+
border_color = 'white' # 白色边框
|
22 |
+
# 添加边框
|
23 |
+
img_with_border = ImageOps.expand(input_image, border=border_width, fill=border_color)
|
24 |
+
return img_with_border
|
25 |
+
|
26 |
+
def process_mulline_text(draw, text, font, max_width):
|
27 |
+
"""
|
28 |
+
Draw the text on an image with word wrapping.
|
29 |
+
"""
|
30 |
+
lines = [] # Store the lines of text here
|
31 |
+
words = text.split()
|
32 |
+
|
33 |
+
# Start building lines of text, and wrap when necessary
|
34 |
+
current_line = ""
|
35 |
+
for word in words:
|
36 |
+
test_line = f"{current_line} {word}".strip()
|
37 |
+
# Check the width of the line with this word added
|
38 |
+
bbox = draw.textbbox((0, 0), test_line, font=font)
|
39 |
+
text_left, text_top, text_right, text_bottom = bbox
|
40 |
+
|
41 |
+
width, _ = (text_right - text_left, text_bottom - text_top)
|
42 |
+
|
43 |
+
if width <= max_width:
|
44 |
+
# If it fits, add this word to the current line
|
45 |
+
current_line = test_line
|
46 |
+
else:
|
47 |
+
# If not, store the line and start a new one
|
48 |
+
lines.append(current_line)
|
49 |
+
current_line = word
|
50 |
+
# Add the last line
|
51 |
+
lines.append(current_line)
|
52 |
+
return lines
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
def add_caption(image, text, position = "bottom-mid", font = None, text_color= 'black', bg_color = (255, 255, 255) , bg_opacity = 200):
|
57 |
+
if text == "":
|
58 |
+
return image
|
59 |
+
image = image.convert("RGBA")
|
60 |
+
draw = ImageDraw.Draw(image)
|
61 |
+
width, height = image.size
|
62 |
+
lines = process_mulline_text(draw,text,font,width)
|
63 |
+
text_positions = []
|
64 |
+
maxwidth = 0
|
65 |
+
for ind, line in enumerate(lines[::-1]):
|
66 |
+
bbox = draw.textbbox((0, 0), line, font=font)
|
67 |
+
text_left, text_top, text_right, text_bottom = bbox
|
68 |
+
text_width, text_height = (text_right - text_left, text_bottom - text_top)
|
69 |
+
if position == 'bottom-right':
|
70 |
+
text_position = (width - text_width - 10, height - (text_height + 20))
|
71 |
+
elif position == 'bottom-left':
|
72 |
+
text_position = (10, height - (text_height + 20))
|
73 |
+
elif position == 'bottom-mid':
|
74 |
+
text_position = ((width - text_width) // 2, height - (text_height + 20) ) # 居中文本
|
75 |
+
height = text_position[1]
|
76 |
+
maxwidth = max(maxwidth,text_width)
|
77 |
+
text_positions.append(text_position)
|
78 |
+
rectpos = (width - maxwidth) // 2
|
79 |
+
rectangle_position = [rectpos - 5, text_positions[-1][1] - 5, rectpos + maxwidth + 5, text_positions[0][1] + text_height + 5]
|
80 |
+
image_with_transparency = Image.new('RGBA', image.size)
|
81 |
+
draw_with_transparency = ImageDraw.Draw(image_with_transparency)
|
82 |
+
draw_with_transparency.rectangle(rectangle_position, fill=bg_color + (bg_opacity,))
|
83 |
+
|
84 |
+
image.paste(Image.alpha_composite(image.convert('RGBA'), image_with_transparency))
|
85 |
+
print(ind,text_position)
|
86 |
+
draw = ImageDraw.Draw(image)
|
87 |
+
for ind, line in enumerate(lines[::-1]):
|
88 |
+
text_position = text_positions[ind]
|
89 |
+
draw.text(text_position, line, fill=text_color, font=font)
|
90 |
+
|
91 |
+
return image.convert('RGB')
|
92 |
+
|
93 |
+
def get_comic(images,types = "4panel",captions = [],font = None,pad_image = None):
|
94 |
+
if pad_image == None:
|
95 |
+
pad_image = Image.open("./images/pad_images.png")
|
96 |
+
|
97 |
+
if types == "No typesetting (default)":
|
98 |
+
return images
|
99 |
+
elif types == "Four Pannel":
|
100 |
+
return get_comic_4panel(images,captions,font,pad_image)
|
101 |
+
else: # "Classic Comic Style"
|
102 |
+
return get_comic_classical(images,captions,font,pad_image)
|
103 |
+
|
104 |
+
def get_caption_group(images_groups,captions = []):
|
105 |
+
caption_groups = []
|
106 |
+
for i in range(len(images_groups)):
|
107 |
+
length = len(images_groups[i])
|
108 |
+
caption_groups.append(captions[:length])
|
109 |
+
captions = captions[length:]
|
110 |
+
if len(caption_groups[-1]) < len(images_groups[-1]):
|
111 |
+
caption_groups[-1] = caption_groups[-1] + [""] * (len(images_groups[-1]) - len(caption_groups[-1]))
|
112 |
+
return caption_groups
|
113 |
+
|
114 |
+
def get_comic_classical(images,captions = None,font = None,pad_image = None):
|
115 |
+
if pad_image == None:
|
116 |
+
raise ValueError("pad_image is None")
|
117 |
+
images = [add_white_border(image) for image in images]
|
118 |
+
pad_image = pad_image.resize(images[0].size, Image.LANCZOS)
|
119 |
+
images_groups = distribute_images2(images,pad_image)
|
120 |
+
print(images_groups)
|
121 |
+
if captions != None:
|
122 |
+
captions_groups = get_caption_group(images_groups,captions)
|
123 |
+
# print(images_groups)
|
124 |
+
row_images = []
|
125 |
+
for ind, img_group in enumerate(images_groups):
|
126 |
+
row_images.append(get_row_image2(img_group ,captions= captions_groups[ind] if captions != None else None,font = font))
|
127 |
+
|
128 |
+
return [combine_images_vertically_with_resize(row_images)]
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
def get_comic_4panel(images,captions = [],font = None,pad_image = None):
|
133 |
+
if pad_image == None:
|
134 |
+
raise ValueError("pad_image is None")
|
135 |
+
pad_image = pad_image.resize(images[0].size, Image.LANCZOS)
|
136 |
+
images = [add_white_border(image) for image in images]
|
137 |
+
assert len(captions) == len(images)
|
138 |
+
for i,caption in enumerate(captions):
|
139 |
+
images[i] = add_caption(images[i],caption,font = font)
|
140 |
+
images_nums = len(images)
|
141 |
+
pad_nums = int((4 - images_nums % 4) % 4)
|
142 |
+
images = images + [pad_image for _ in range(pad_nums)]
|
143 |
+
comics = []
|
144 |
+
assert len(images)%4 == 0
|
145 |
+
for i in range(len(images)//4):
|
146 |
+
comics.append(combine_images_vertically_with_resize([combine_images_horizontally(images[i*4:i*4+2]), combine_images_horizontally(images[i*4+2:i*4+4])]))
|
147 |
+
|
148 |
+
return comics
|
149 |
+
|
150 |
+
def get_row_image(images):
|
151 |
+
row_image_arr = []
|
152 |
+
if len(images)>3:
|
153 |
+
stack_img_nums = (len(images) - 2)//2
|
154 |
+
else:
|
155 |
+
stack_img_nums = 0
|
156 |
+
while(len(images)>0):
|
157 |
+
if stack_img_nums <=0:
|
158 |
+
row_image_arr.append(images[0])
|
159 |
+
images = images[1:]
|
160 |
+
elif len(images)>stack_img_nums*2:
|
161 |
+
if get_random_bool():
|
162 |
+
row_image_arr.append(concat_images_vertically_and_scale(images[:2]))
|
163 |
+
images = images[2:]
|
164 |
+
stack_img_nums -=1
|
165 |
+
else:
|
166 |
+
row_image_arr.append(images[0])
|
167 |
+
images = images[1:]
|
168 |
+
else:
|
169 |
+
row_image_arr.append(concat_images_vertically_and_scale(images[:2]))
|
170 |
+
images = images[2:]
|
171 |
+
stack_img_nums-=1
|
172 |
+
return combine_images_horizontally(row_image_arr)
|
173 |
+
|
174 |
+
def get_row_image2(images,captions = None, font = None):
|
175 |
+
row_image_arr = []
|
176 |
+
if len(images)== 6:
|
177 |
+
sequence_list = [1,1,2,2]
|
178 |
+
elif len(images)== 4:
|
179 |
+
sequence_list = [1,1,2]
|
180 |
+
else:
|
181 |
+
raise ValueError("images nums is not 4 or 6 found",len(images))
|
182 |
+
random.shuffle(sequence_list)
|
183 |
+
index = 0
|
184 |
+
for length in sequence_list:
|
185 |
+
if length == 1:
|
186 |
+
if captions != None:
|
187 |
+
images_tmp = add_caption(images[0],text = captions[index],font= font)
|
188 |
+
else:
|
189 |
+
images_tmp = images[0]
|
190 |
+
row_image_arr.append( images_tmp)
|
191 |
+
images = images[1:]
|
192 |
+
index +=1
|
193 |
+
elif length == 2:
|
194 |
+
row_image_arr.append(concat_images_vertically_and_scale(images[:2]))
|
195 |
+
images = images[2:]
|
196 |
+
index +=2
|
197 |
+
|
198 |
+
return combine_images_horizontally(row_image_arr)
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
def concat_images_vertically_and_scale(images,scale_factor=2):
|
203 |
+
# 加载所有图像
|
204 |
+
# 确保所有图像的宽度一致
|
205 |
+
widths = [img.width for img in images]
|
206 |
+
if not all(width == widths[0] for width in widths):
|
207 |
+
raise ValueError('All images must have the same width.')
|
208 |
+
|
209 |
+
# 计算总高度
|
210 |
+
total_height = sum(img.height for img in images)
|
211 |
+
|
212 |
+
# 创建新的图像,宽度与原图相同,高度为所有图像高度之和
|
213 |
+
max_width = max(widths)
|
214 |
+
concatenated_image = Image.new('RGB', (max_width, total_height))
|
215 |
+
|
216 |
+
# 竖直拼接图像
|
217 |
+
current_height = 0
|
218 |
+
for img in images:
|
219 |
+
concatenated_image.paste(img, (0, current_height))
|
220 |
+
current_height += img.height
|
221 |
+
|
222 |
+
# 缩放图像为1/n高度
|
223 |
+
new_height = concatenated_image.height // scale_factor
|
224 |
+
new_width = concatenated_image.width // scale_factor
|
225 |
+
resized_image = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
|
226 |
+
|
227 |
+
return resized_image
|
228 |
+
|
229 |
+
|
230 |
+
def combine_images_horizontally(images):
|
231 |
+
# 读取所有图片并存入列表
|
232 |
+
|
233 |
+
# 获取每幅图像的宽度和高度
|
234 |
+
widths, heights = zip(*(i.size for i in images))
|
235 |
+
|
236 |
+
# 计算总宽度和最大高度
|
237 |
+
total_width = sum(widths)
|
238 |
+
max_height = max(heights)
|
239 |
+
|
240 |
+
# 创建新的空白图片,用于拼接
|
241 |
+
new_im = Image.new('RGB', (total_width, max_height))
|
242 |
+
|
243 |
+
# 将图片横向拼接
|
244 |
+
x_offset = 0
|
245 |
+
for im in images:
|
246 |
+
new_im.paste(im, (x_offset, 0))
|
247 |
+
x_offset += im.width
|
248 |
+
|
249 |
+
return new_im
|
250 |
+
|
251 |
+
def combine_images_vertically_with_resize(images):
|
252 |
+
|
253 |
+
# 获取所有图片的宽度和高度
|
254 |
+
widths, heights = zip(*(i.size for i in images))
|
255 |
+
|
256 |
+
# 确定新图片的宽度,即所有图片中最小的宽度
|
257 |
+
min_width = min(widths)
|
258 |
+
|
259 |
+
# 调整图片尺寸以保持宽度一致,长宽比不变
|
260 |
+
resized_images = []
|
261 |
+
for img in images:
|
262 |
+
# 计算新高度保持图片长宽比
|
263 |
+
new_height = int(min_width * img.height / img.width)
|
264 |
+
# 调整图片大小
|
265 |
+
resized_img = img.resize((min_width, new_height), Image.LANCZOS)
|
266 |
+
resized_images.append(resized_img)
|
267 |
+
|
268 |
+
# 计算所有调整尺寸后图片的总高度
|
269 |
+
total_height = sum(img.height for img in resized_images)
|
270 |
+
|
271 |
+
# 创建一个足够宽和高的新图片对象
|
272 |
+
new_im = Image.new('RGB', (min_width, total_height))
|
273 |
+
|
274 |
+
# 竖直拼接图片
|
275 |
+
y_offset = 0
|
276 |
+
for im in resized_images:
|
277 |
+
new_im.paste(im, (0, y_offset))
|
278 |
+
y_offset += im.height
|
279 |
+
|
280 |
+
return new_im
|
281 |
+
|
282 |
+
def distribute_images2(images, pad_image):
|
283 |
+
groups = []
|
284 |
+
remaining = len(images)
|
285 |
+
if len(images) <= 8:
|
286 |
+
group_sizes = [4]
|
287 |
+
else:
|
288 |
+
group_sizes = [4, 6]
|
289 |
+
|
290 |
+
size_index = 0
|
291 |
+
while remaining > 0:
|
292 |
+
size = group_sizes[size_index%len(group_sizes)]
|
293 |
+
if remaining < size and remaining < min(group_sizes):
|
294 |
+
size = min(group_sizes)
|
295 |
+
if remaining > size:
|
296 |
+
new_group = images[-remaining: -remaining + size]
|
297 |
+
else:
|
298 |
+
new_group = images[-remaining:]
|
299 |
+
groups.append(new_group)
|
300 |
+
size_index += 1
|
301 |
+
remaining -= size
|
302 |
+
print(remaining,groups)
|
303 |
+
groups[-1] = groups[-1] + [pad_image for _ in range(-remaining)]
|
304 |
+
|
305 |
+
return groups
|
306 |
+
|
307 |
+
|
308 |
+
def distribute_images(images, group_sizes=(4, 3, 2)):
|
309 |
+
groups = []
|
310 |
+
remaining = len(images)
|
311 |
+
|
312 |
+
while remaining > 0:
|
313 |
+
# 优先分配最大组(4张图片),再考虑3张,最后处理2张
|
314 |
+
for size in sorted(group_sizes, reverse=True):
|
315 |
+
# 如果剩下的图片数量大于等于当前组大小,或者为图片总数时(也就是第一次迭代)
|
316 |
+
# 开始创建新组
|
317 |
+
if remaining >= size or remaining == len(images):
|
318 |
+
if remaining > size:
|
319 |
+
new_group = images[-remaining: -remaining + size]
|
320 |
+
else:
|
321 |
+
new_group = images[-remaining:]
|
322 |
+
groups.append(new_group)
|
323 |
+
remaining -= size
|
324 |
+
break
|
325 |
+
# 如果剩下的图片少于最小的组大小(2张)并且已经有组了,就把剩下的图片加到最后一个组
|
326 |
+
elif remaining < min(group_sizes) and groups:
|
327 |
+
groups[-1].extend(images[-remaining:])
|
328 |
+
remaining = 0
|
329 |
+
|
330 |
+
return groups
|
331 |
+
|
332 |
+
def create_binary_matrix(img_arr, target_color):
|
333 |
+
mask = np.all(img_arr == target_color, axis=-1)
|
334 |
+
binary_matrix = mask.astype(int)
|
335 |
+
return binary_matrix
|
336 |
+
|
337 |
+
def preprocess_mask(mask_, h, w, device):
|
338 |
+
mask = np.array(mask_)
|
339 |
+
mask = mask.astype(np.float32)
|
340 |
+
mask = mask[None, None]
|
341 |
+
mask[mask < 0.5] = 0
|
342 |
+
mask[mask >= 0.5] = 1
|
343 |
+
mask = torch.from_numpy(mask).to(device)
|
344 |
+
mask = torch.nn.functional.interpolate(mask, size=(h, w), mode='nearest')
|
345 |
+
return mask
|
346 |
+
|
347 |
+
def process_sketch(canvas_data):
|
348 |
+
binary_matrixes = []
|
349 |
+
base64_img = canvas_data['image']
|
350 |
+
image_data = base64.b64decode(base64_img.split(',')[1])
|
351 |
+
image = Image.open(BytesIO(image_data)).convert("RGB")
|
352 |
+
im2arr = np.array(image)
|
353 |
+
colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
|
354 |
+
colors_fixed = []
|
355 |
+
|
356 |
+
r, g, b = 255, 255, 255
|
357 |
+
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
|
358 |
+
binary_matrixes.append(binary_matrix)
|
359 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
360 |
+
colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
|
361 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
362 |
+
|
363 |
+
for color in colors:
|
364 |
+
r, g, b = color
|
365 |
+
if any(c != 255 for c in (r, g, b)):
|
366 |
+
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
|
367 |
+
binary_matrixes.append(binary_matrix)
|
368 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
369 |
+
colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
|
370 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
371 |
+
|
372 |
+
visibilities = []
|
373 |
+
colors = []
|
374 |
+
for n in range(MAX_COLORS):
|
375 |
+
visibilities.append(gr.update(visible=False))
|
376 |
+
colors.append(gr.update())
|
377 |
+
for n in range(len(colors_fixed)):
|
378 |
+
visibilities[n] = gr.update(visible=True)
|
379 |
+
colors[n] = colors_fixed[n]
|
380 |
+
|
381 |
+
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
|
382 |
+
|
383 |
+
def process_prompts(binary_matrixes, *seg_prompts):
|
384 |
+
return [gr.update(visible=True), gr.update(value=' , '.join(seg_prompts[:len(binary_matrixes)]))]
|
385 |
+
|
386 |
+
def process_example(layout_path, all_prompts, seed_):
|
387 |
+
|
388 |
+
all_prompts = all_prompts.split('***')
|
389 |
+
|
390 |
+
binary_matrixes = []
|
391 |
+
colors_fixed = []
|
392 |
+
|
393 |
+
im2arr = np.array(Image.open(layout_path))[:,:,:3]
|
394 |
+
unique, counts = np.unique(np.reshape(im2arr,(-1,3)), axis=0, return_counts=True)
|
395 |
+
sorted_idx = np.argsort(-counts)
|
396 |
+
|
397 |
+
binary_matrix = create_binary_matrix(im2arr, (0,0,0))
|
398 |
+
binary_matrixes.append(binary_matrix)
|
399 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
400 |
+
colored_map = binary_matrix_*(255,255,255) + (1-binary_matrix_)*(50,50,50)
|
401 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
402 |
+
|
403 |
+
for i in range(len(all_prompts)-1):
|
404 |
+
r, g, b = unique[sorted_idx[i]]
|
405 |
+
if any(c != 255 for c in (r, g, b)) and any(c != 0 for c in (r, g, b)):
|
406 |
+
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
|
407 |
+
binary_matrixes.append(binary_matrix)
|
408 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
409 |
+
colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
|
410 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
411 |
+
|
412 |
+
visibilities = []
|
413 |
+
colors = []
|
414 |
+
prompts = []
|
415 |
+
for n in range(MAX_COLORS):
|
416 |
+
visibilities.append(gr.update(visible=False))
|
417 |
+
colors.append(gr.update())
|
418 |
+
prompts.append(gr.update())
|
419 |
+
|
420 |
+
for n in range(len(colors_fixed)):
|
421 |
+
visibilities[n] = gr.update(visible=True)
|
422 |
+
colors[n] = colors_fixed[n]
|
423 |
+
prompts[n] = all_prompts[n+1]
|
424 |
+
|
425 |
+
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors, *prompts,
|
426 |
+
gr.update(visible=True), gr.update(value=all_prompts[0]), int(seed_)]
|