benhaotang commited on
Commit
582aa9d
·
verified ·
1 Parent(s): 3faff59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -59
app.py CHANGED
@@ -1,65 +1,51 @@
1
- import spaces
2
  import gradio as gr
3
- from huggingface_hub import InferenceClient
4
-
5
- """
6
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
- """
8
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
-
10
- @spaces.GPU(duration=40)
11
- def respond(
12
- message,
13
- history: list[tuple[str, str]],
14
- system_message,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
-
27
- messages.append({"role": "user", "content": message})
28
-
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
39
-
40
- response += token
41
- yield response
42
-
43
 
44
- """
45
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
46
- """
47
- demo = gr.ChatInterface(
48
- respond,
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ),
60
  ],
 
 
 
 
 
 
 
 
61
  )
62
 
63
-
64
- if __name__ == "__main__":
65
- demo.launch()
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3
+ import torch
4
+ import spaces
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ def load_model():
7
+ bnb_config = BitsAndBytesConfig(
8
+ load_in_8bit=False,
9
+ llm_int8_enable_fp32_cpu_offload=True
10
+ )
11
+
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ "benhaotang/mistral-small-physics-finetuned-bnb-4bit",
14
+ device_map="auto",
15
+ torch_dtype=torch.float16,
16
+ offload_folder="offload_folder",
17
+ quantization_config=bnb_config
18
+ )
19
+
20
+ tokenizer = AutoTokenizer.from_pretrained("benhaotang/mistral-small-physics-finetuned-bnb-4bit")
21
+ return model, tokenizer
22
+
23
+ model, tokenizer = load_model()
24
+
25
+ @spaces.GPU(duration=45) # Added the decorator here
26
+ def generate_response(prompt, max_length=2048):
27
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
28
+ outputs = model.generate(**inputs, max_length=max_length)
29
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
30
+ return response
31
+
32
+ demo = gr.Interface(
33
+ fn=generate_response,
34
+ inputs=[
35
+ gr.Textbox(
36
+ label="Enter your physics question",
37
+ placeholder="Ask me anything about physics...",
38
+ lines=5
39
  ),
40
  ],
41
+ outputs=gr.Textbox(label="Response", lines=10),
42
+ title="Physics AI Assistant",
43
+ description="Ask questions about physics concepts, and I'll provide detailed explanations.",
44
+ examples=[
45
+ ["Give me a short introduction to renormalization group(RG) flow in physics?"],
46
+ ["What is quantum entanglement?"],
47
+ ["Explain the concept of gauge symmetry in physics."]
48
+ ]
49
  )
50
 
51
+ demo.launch()