Spaces:
Running
on
Zero
Running
on
Zero
benhaotang
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,51 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
-
"""
|
8 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
-
|
10 |
-
@spaces.GPU(duration=40)
|
11 |
-
def respond(
|
12 |
-
message,
|
13 |
-
history: list[tuple[str, str]],
|
14 |
-
system_message,
|
15 |
-
max_tokens,
|
16 |
-
temperature,
|
17 |
-
top_p,
|
18 |
-
):
|
19 |
-
messages = [{"role": "system", "content": system_message}]
|
20 |
-
|
21 |
-
for val in history:
|
22 |
-
if val[0]:
|
23 |
-
messages.append({"role": "user", "content": val[0]})
|
24 |
-
if val[1]:
|
25 |
-
messages.append({"role": "assistant", "content": val[1]})
|
26 |
-
|
27 |
-
messages.append({"role": "user", "content": message})
|
28 |
-
|
29 |
-
response = ""
|
30 |
-
|
31 |
-
for message in client.chat_completion(
|
32 |
-
messages,
|
33 |
-
max_tokens=max_tokens,
|
34 |
-
stream=True,
|
35 |
-
temperature=temperature,
|
36 |
-
top_p=top_p,
|
37 |
-
):
|
38 |
-
token = message.choices[0].delta.content
|
39 |
-
|
40 |
-
response += token
|
41 |
-
yield response
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
),
|
60 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
|
63 |
-
|
64 |
-
if __name__ == "__main__":
|
65 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
+
import torch
|
4 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def load_model():
|
7 |
+
bnb_config = BitsAndBytesConfig(
|
8 |
+
load_in_8bit=False,
|
9 |
+
llm_int8_enable_fp32_cpu_offload=True
|
10 |
+
)
|
11 |
+
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
"benhaotang/mistral-small-physics-finetuned-bnb-4bit",
|
14 |
+
device_map="auto",
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
offload_folder="offload_folder",
|
17 |
+
quantization_config=bnb_config
|
18 |
+
)
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("benhaotang/mistral-small-physics-finetuned-bnb-4bit")
|
21 |
+
return model, tokenizer
|
22 |
+
|
23 |
+
model, tokenizer = load_model()
|
24 |
+
|
25 |
+
@spaces.GPU(duration=45) # Added the decorator here
|
26 |
+
def generate_response(prompt, max_length=2048):
|
27 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
outputs = model.generate(**inputs, max_length=max_length)
|
29 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
+
return response
|
31 |
+
|
32 |
+
demo = gr.Interface(
|
33 |
+
fn=generate_response,
|
34 |
+
inputs=[
|
35 |
+
gr.Textbox(
|
36 |
+
label="Enter your physics question",
|
37 |
+
placeholder="Ask me anything about physics...",
|
38 |
+
lines=5
|
39 |
),
|
40 |
],
|
41 |
+
outputs=gr.Textbox(label="Response", lines=10),
|
42 |
+
title="Physics AI Assistant",
|
43 |
+
description="Ask questions about physics concepts, and I'll provide detailed explanations.",
|
44 |
+
examples=[
|
45 |
+
["Give me a short introduction to renormalization group(RG) flow in physics?"],
|
46 |
+
["What is quantum entanglement?"],
|
47 |
+
["Explain the concept of gauge symmetry in physics."]
|
48 |
+
]
|
49 |
)
|
50 |
|
51 |
+
demo.launch()
|
|
|
|