Spaces:
Sleeping
Sleeping
benfunke98
commited on
Commit
•
93832f6
1
Parent(s):
f8bd053
added token
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
from fastai.vision.all import *
|
4 |
from PIL import Image
|
5 |
import os
|
@@ -12,24 +14,6 @@ access_token = os.getenv("HF_TOKEN")
|
|
12 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
13 |
app = FastAPI(docs_url="/")
|
14 |
|
15 |
-
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
16 |
-
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
|
17 |
-
learn = load_learner('model.pkl')
|
18 |
-
|
19 |
-
# Überprüfe, ob das Zugriffstoken vorhanden ist
|
20 |
-
if access_token is None:
|
21 |
-
raise ValueError("Access token is missing. Make sure it is set as an environment variable.")
|
22 |
-
|
23 |
-
@app.get("/generate")
|
24 |
-
def generate(text: str):
|
25 |
-
"""
|
26 |
-
Using the text2text-generation pipeline from `transformers`, generate text
|
27 |
-
from the given input text. The model used is `google/flan-t5-small`, which
|
28 |
-
can be found [here](https://huggingface.co/google/flan-t5-small).
|
29 |
-
"""
|
30 |
-
output = pipe(text)
|
31 |
-
return {"output": output[0]["generated_text"]}
|
32 |
-
|
33 |
@app.post("/face-analyse")
|
34 |
async def face_analyse(file: UploadFile = File(...)):
|
35 |
# Read the uploaded file content
|
@@ -62,7 +46,7 @@ async def face_analyse(file: UploadFile = File(...)):
|
|
62 |
|
63 |
# Initialisiere das Modell und den Tokenizer
|
64 |
model = "meta-llama/CodeLlama-7b-hf"
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained(model)
|
66 |
llama_pipeline = pipeline(
|
67 |
"text-generation",
|
68 |
model=model,
|
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import transformers
|
5 |
from fastai.vision.all import *
|
6 |
from PIL import Image
|
7 |
import os
|
|
|
14 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
15 |
app = FastAPI(docs_url="/")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
@app.post("/face-analyse")
|
18 |
async def face_analyse(file: UploadFile = File(...)):
|
19 |
# Read the uploaded file content
|
|
|
46 |
|
47 |
# Initialisiere das Modell und den Tokenizer
|
48 |
model = "meta-llama/CodeLlama-7b-hf"
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model, token=access_token)
|
50 |
llama_pipeline = pipeline(
|
51 |
"text-generation",
|
52 |
model=model,
|