wilton
updating of functions, new MMS model for spanish TTS support
95149f6
raw
history blame
2.39 kB
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import pipeline, VitsModel, AutoTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=device)
# load facebook mms espanish model/checkpoint
model = VitsModel.from_pretrained("facebook/mms-tts-spa")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa")
target_dtype = np.int16
max_range = np.iinfo(target_dtype).max
def translate(audio):
outputs = asr_pipe(
audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"}
)
return outputs["text"]
def synthesise(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
speech = model(**inputs).waveform
return speech.squeeze(0).cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
return 16_000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in *Spanish*. Demo uses OpenAI's [Whisper Small](https://huggingface.co/openai/whisper-small) model for speech translation, and Meta's
[MMS TTS Spanish](https://huggingface.co/facebook/mms-tts-spa) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech :)", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch(debug=True)