bellmake's picture
SAM3 Video Segmentation - Clean deployment
14114e8
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import warnings
from typing import Dict, List
import numpy as np
# Check if Numba is available
HAS_NUMBA = False
try:
import numba as nb
HAS_NUMBA = True
except ImportError:
warnings.warn(
"Numba not found. Using slower pure Python implementations.", UserWarning
)
# -------------------- Helper Functions --------------------
def is_zero_box(bbox: list) -> bool:
"""Check if bounding box is invalid"""
if bbox is None:
return True
return all(x <= 0 for x in bbox[:4]) or len(bbox) < 4
def convert_bbox_format(bbox: list) -> List[float]:
"""Convert bbox from (x,y,w,h) to (x1,y1,x2,y2)"""
x, y, w, h = bbox
return [x, y, x + w, y + h]
# -------------------- Track-level NMS --------------------
def process_track_level_nms(video_groups: Dict, nms_threshold: float) -> Dict:
"""Apply track-level NMS to all videos"""
for video_id, tracks in video_groups.items():
track_detections = []
# Process tracks
for track_idx, track in enumerate(tracks):
if not track["bboxes"]:
continue
converted_bboxes = []
valid_frames = []
for bbox in track["bboxes"]:
if bbox and not is_zero_box(bbox):
converted_bboxes.append(convert_bbox_format(bbox))
valid_frames.append(True)
else:
converted_bboxes.append([np.nan] * 4)
valid_frames.append(False)
if any(valid_frames):
track_detections.append(
{
"track_idx": track_idx,
"bboxes": np.array(converted_bboxes, dtype=np.float32),
"score": track["score"],
}
)
# Apply NMS
if track_detections:
scores = np.array([d["score"] for d in track_detections], dtype=np.float32)
keep = apply_track_nms(track_detections, scores, nms_threshold)
# Suppress non-kept tracks
for idx, track in enumerate(track_detections):
if idx not in keep:
tracks[track["track_idx"]]["bboxes"] = [None] * len(track["bboxes"])
return video_groups
# -------------------- Frame-level NMS --------------------
def process_frame_level_nms(video_groups: Dict, nms_threshold: float) -> Dict:
"""Apply frame-level NMS to all videos"""
for video_id, tracks in video_groups.items():
if not tracks:
continue
num_frames = len(tracks[0]["bboxes"])
for frame_idx in range(num_frames):
frame_detections = []
# Collect valid detections
for track_idx, track in enumerate(tracks):
bbox = track["bboxes"][frame_idx]
if bbox and not is_zero_box(bbox):
frame_detections.append(
{
"track_idx": track_idx,
"bbox": np.array(
convert_bbox_format(bbox), dtype=np.float32
),
"score": track["score"],
}
)
# Apply NMS
if frame_detections:
bboxes = np.stack([d["bbox"] for d in frame_detections])
scores = np.array(
[d["score"] for d in frame_detections], dtype=np.float32
)
keep = apply_frame_nms(bboxes, scores, nms_threshold)
# Suppress non-kept detections
for i, d in enumerate(frame_detections):
if i not in keep:
tracks[d["track_idx"]]["bboxes"][frame_idx] = None
return video_groups
# Track-level NMS helpers ------------------------------------------------------
def compute_track_iou_matrix(
bboxes_stacked: np.ndarray, valid_masks: np.ndarray, areas: np.ndarray
) -> np.ndarray:
"""IoU matrix computation for track-level NMS with fallback to pure Python"""
num_tracks = bboxes_stacked.shape[0]
iou_matrix = np.zeros((num_tracks, num_tracks), dtype=np.float32)
if HAS_NUMBA:
iou_matrix = _compute_track_iou_matrix_numba(bboxes_stacked, valid_masks, areas)
else:
# Pure Python implementation
for i in range(num_tracks):
for j in range(i + 1, num_tracks):
valid_ij = valid_masks[i] & valid_masks[j]
if not valid_ij.any():
continue
bboxes_i = bboxes_stacked[i, valid_ij]
bboxes_j = bboxes_stacked[j, valid_ij]
area_i = areas[i, valid_ij]
area_j = areas[j, valid_ij]
inter_total = 0.0
union_total = 0.0
for k in range(bboxes_i.shape[0]):
x1 = max(bboxes_i[k, 0], bboxes_j[k, 0])
y1 = max(bboxes_i[k, 1], bboxes_j[k, 1])
x2 = min(bboxes_i[k, 2], bboxes_j[k, 2])
y2 = min(bboxes_i[k, 3], bboxes_j[k, 3])
inter = max(0, x2 - x1) * max(0, y2 - y1)
union = area_i[k] + area_j[k] - inter
inter_total += inter
union_total += union
if union_total > 0:
iou_matrix[i, j] = inter_total / union_total
iou_matrix[j, i] = iou_matrix[i, j]
return iou_matrix
if HAS_NUMBA:
@nb.jit(nopython=True, parallel=True)
def _compute_track_iou_matrix_numba(bboxes_stacked, valid_masks, areas):
"""Numba-optimized IoU matrix computation for track-level NMS"""
num_tracks = bboxes_stacked.shape[0]
iou_matrix = np.zeros((num_tracks, num_tracks), dtype=np.float32)
for i in nb.prange(num_tracks):
for j in range(i + 1, num_tracks):
valid_ij = valid_masks[i] & valid_masks[j]
if not valid_ij.any():
continue
bboxes_i = bboxes_stacked[i, valid_ij]
bboxes_j = bboxes_stacked[j, valid_ij]
area_i = areas[i, valid_ij]
area_j = areas[j, valid_ij]
inter_total = 0.0
union_total = 0.0
for k in range(bboxes_i.shape[0]):
x1 = max(bboxes_i[k, 0], bboxes_j[k, 0])
y1 = max(bboxes_i[k, 1], bboxes_j[k, 1])
x2 = min(bboxes_i[k, 2], bboxes_j[k, 2])
y2 = min(bboxes_i[k, 3], bboxes_j[k, 3])
inter = max(0, x2 - x1) * max(0, y2 - y1)
union = area_i[k] + area_j[k] - inter
inter_total += inter
union_total += union
if union_total > 0:
iou_matrix[i, j] = inter_total / union_total
iou_matrix[j, i] = iou_matrix[i, j]
return iou_matrix
def apply_track_nms(
track_detections: List[dict], scores: np.ndarray, nms_threshold: float
) -> List[int]:
"""Vectorized track-level NMS implementation"""
if not track_detections:
return []
bboxes_stacked = np.stack([d["bboxes"] for d in track_detections], axis=0)
valid_masks = ~np.isnan(bboxes_stacked).any(axis=2)
areas = (bboxes_stacked[:, :, 2] - bboxes_stacked[:, :, 0]) * (
bboxes_stacked[:, :, 3] - bboxes_stacked[:, :, 1]
)
areas[~valid_masks] = 0
iou_matrix = compute_track_iou_matrix(bboxes_stacked, valid_masks, areas)
keep = []
order = np.argsort(-scores)
suppress = np.zeros(len(track_detections), dtype=bool)
for i in range(len(order)):
if not suppress[order[i]]:
keep.append(order[i])
suppress[order[i:]] = suppress[order[i:]] | (
iou_matrix[order[i], order[i:]] >= nms_threshold
)
return keep
# Frame-level NMS helpers ------------------------------------------------------
def compute_frame_ious(bbox: np.ndarray, bboxes: np.ndarray) -> np.ndarray:
"""IoU computation for frame-level NMS with fallback to pure Python"""
if HAS_NUMBA:
return _compute_frame_ious_numba(bbox, bboxes)
else:
# Pure Python implementation
ious = np.zeros(len(bboxes), dtype=np.float32)
for i in range(len(bboxes)):
x1 = max(bbox[0], bboxes[i, 0])
y1 = max(bbox[1], bboxes[i, 1])
x2 = min(bbox[2], bboxes[i, 2])
y2 = min(bbox[3], bboxes[i, 3])
inter = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
area2 = (bboxes[i, 2] - bboxes[i, 0]) * (bboxes[i, 3] - bboxes[i, 1])
union = area1 + area2 - inter
ious[i] = inter / union if union > 0 else 0.0
return ious
if HAS_NUMBA:
@nb.jit(nopython=True, parallel=True)
def _compute_frame_ious_numba(bbox, bboxes):
"""Numba-optimized IoU computation"""
ious = np.zeros(len(bboxes), dtype=np.float32)
for i in nb.prange(len(bboxes)):
x1 = max(bbox[0], bboxes[i, 0])
y1 = max(bbox[1], bboxes[i, 1])
x2 = min(bbox[2], bboxes[i, 2])
y2 = min(bbox[3], bboxes[i, 3])
inter = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
area2 = (bboxes[i, 2] - bboxes[i, 0]) * (bboxes[i, 3] - bboxes[i, 1])
union = area1 + area2 - inter
ious[i] = inter / union if union > 0 else 0.0
return ious
def apply_frame_nms(
bboxes: np.ndarray, scores: np.ndarray, nms_threshold: float
) -> List[int]:
"""Frame-level NMS implementation with fallback to pure Python"""
if HAS_NUMBA:
return _apply_frame_nms_numba(bboxes, scores, nms_threshold)
else:
# Pure Python implementation
order = np.argsort(-scores)
keep = []
suppress = np.zeros(len(bboxes), dtype=bool)
for i in range(len(order)):
if not suppress[order[i]]:
keep.append(order[i])
current_bbox = bboxes[order[i]]
remaining_bboxes = bboxes[order[i + 1 :]]
if len(remaining_bboxes) > 0: # Check if there are any remaining boxes
ious = compute_frame_ious(current_bbox, remaining_bboxes)
suppress[order[i + 1 :]] = suppress[order[i + 1 :]] | (
ious >= nms_threshold
)
return keep
if HAS_NUMBA:
@nb.jit(nopython=True)
def _apply_frame_nms_numba(bboxes, scores, nms_threshold):
"""Numba-optimized NMS implementation"""
order = np.argsort(-scores)
keep = []
suppress = np.zeros(len(bboxes), dtype=nb.boolean)
for i in range(len(order)):
if not suppress[order[i]]:
keep.append(order[i])
current_bbox = bboxes[order[i]]
if i + 1 < len(order): # Check bounds
ious = _compute_frame_ious_numba(
current_bbox, bboxes[order[i + 1 :]]
)
suppress[order[i + 1 :]] = suppress[order[i + 1 :]] | (
ious >= nms_threshold
)
return keep