bellmake's picture
SAM3 Video Segmentation - Clean deployment
14114e8
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
"""
Adapted from:
1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
2. https://github.com/naver-ai/rope-vit
3. https://github.com/lucidrains/rotary-embedding-torch
"""
from typing import Optional
import torch
from einops import rearrange, repeat
from torch import broadcast_tensors, nn
def init_t_xy(end_x: int, end_y: int, scale: float = 1.0, offset: int = 0, device=None):
t = torch.arange(end_x * end_y, dtype=torch.float32, device=device)
t_x = (t % end_x).float()
t_y = torch.div(t, end_x, rounding_mode="floor").float()
return t_x * scale + offset, t_y * scale + offset
def compute_axial_cis(
dim: int,
end_x: int,
end_y: int,
theta: float = 10000.0,
scale_pos: float = 1.0,
offset: int = 0,
device=None,
):
freqs_x = 1.0 / (
theta ** (torch.arange(0, dim, 4, device=device)[: (dim // 4)].float() / dim)
)
freqs_y = 1.0 / (
theta ** (torch.arange(0, dim, 4, device=device)[: (dim // 4)].float() / dim)
)
t_x, t_y = init_t_xy(end_x, end_y, scale_pos, offset, device=device)
freqs_x = torch.outer(t_x, freqs_x)
freqs_y = torch.outer(t_y, freqs_y)
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_enc(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
repeat_freqs_k: bool = False,
):
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = (
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
if xk.shape[-2] != 0
else None
)
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
if xk_ is None:
# no keys to rotate, due to dropout
return xq_out.type_as(xq).to(xq.device), xk
# repeat freqs along seq_len dim to match k seq_len
if repeat_freqs_k:
r = xk_.shape[-2] // xq_.shape[-2]
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
def complex_mult(xq_real, xq_imag, freqs_cis_real, freqs_cis_imag):
# Compute the real part of the product
real_part = xq_real * freqs_cis_real - xq_imag * freqs_cis_imag
# Compute the imaginary part of the product
imag_part = xq_real * freqs_cis_imag + xq_imag * freqs_cis_real
# Stack the real and imaginary parts along the last dimension
return torch.stack([real_part, imag_part], dim=-1)
def apply_rotary_enc_real(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis_real: torch.Tensor,
freqs_cis_imag: torch.Tensor,
repeat_freqs_k: bool = False,
):
assert xk is not None
assert xk.shape[-2] != 0
xq_real = xq.float().reshape(*xq.shape[:-1], -1, 2)[..., 0]
xq_imag = xq.float().reshape(*xq.shape[:-1], -1, 2)[..., 1]
xk_real = xk.float().reshape(*xk.shape[:-1], -1, 2)[..., 0]
xk_imag = xk.float().reshape(*xk.shape[:-1], -1, 2)[..., 1]
freqs_cis_real = reshape_for_broadcast(freqs_cis_real, xq_real)
freqs_cis_imag = reshape_for_broadcast(freqs_cis_imag, xq_imag)
xq_out = complex_mult(xq_real, xq_imag, freqs_cis_real, freqs_cis_imag).flatten(3)
if repeat_freqs_k:
r = xk_real.shape[-2] // xq_real.shape[-2]
freqs_cis_real = freqs_cis_real.repeat(*([1] * (freqs_cis_real.ndim - 2)), r, 1)
freqs_cis_imag = freqs_cis_imag.repeat(*([1] * (freqs_cis_imag.ndim - 2)), r, 1)
xk_out = complex_mult(xk_real, xk_imag, freqs_cis_real, freqs_cis_imag).flatten(3)
# xq_out = torch.view_as_real(torch.complex(xq_real, xq_imag) * torch.complex(freqs_cis_real, freqs_cis_imag)).flatten(3)
# xk_out = torch.view_as_real(torch.compelx(xk_real, xk_imag) * torch.complex(freqs_cis_real, freqs_cis_imag)).flatten(3)
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
# rotary embedding helper functions
def broadcat(tensors, dim=-1):
broadcasted_tensors = broadcast_tensors(*tensors)
return torch.cat(broadcasted_tensors, dim=dim)
def rotate_half(x: torch.Tensor):
x = rearrange(x, "... (d r) -> ... d r", r=2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return rearrange(x, "... d r -> ... (d r)")
class VisionRotaryEmbeddingVE(nn.Module):
def __init__(
self,
dim: int,
seq_len: int,
pt_seq_len: Optional[int] = None,
theta: float = 10000.0,
offset: int = 1, # specific to VE
):
super().__init__()
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
scale = 1.0
if pt_seq_len is not None:
scale = pt_seq_len / seq_len
# offset of +1 following VE - even though for the
# attention op only differences matter
t = torch.arange(seq_len) * scale + offset
freqs = torch.einsum("..., f -> ... f", t, freqs)
freqs = repeat(freqs, "... n -> ... (n r)", r=2)
freqs = broadcat((freqs[None, :, :], freqs[:, None, :]), dim=-1)
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
self.register_buffer("freqs_cos", freqs_cos)
self.register_buffer("freqs_sin", freqs_sin)
def forward(self, t: torch.Tensor):
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin