|
|
|
|
|
|
|
|
""" |
|
|
Text Tokenizer. |
|
|
|
|
|
Copied and lightly adapted from VE repo, which in turn copied |
|
|
from open_clip and openAI CLIP. |
|
|
""" |
|
|
|
|
|
import gzip |
|
|
import html |
|
|
import io |
|
|
import os |
|
|
import string |
|
|
from functools import lru_cache |
|
|
from typing import List, Optional, Union |
|
|
|
|
|
import ftfy |
|
|
import regex as re |
|
|
import torch |
|
|
from iopath.common.file_io import g_pathmgr |
|
|
|
|
|
|
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
DEFAULT_CONTEXT_LENGTH = 77 |
|
|
|
|
|
|
|
|
@lru_cache() |
|
|
def bytes_to_unicode(): |
|
|
""" |
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
|
The reversible bpe codes work on unicode strings. |
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
|
This is a significant percentage of your normal, say, 32K bpe vocab. |
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
|
""" |
|
|
bs = ( |
|
|
list(range(ord("!"), ord("~") + 1)) |
|
|
+ list(range(ord("¡"), ord("¬") + 1)) |
|
|
+ list(range(ord("®"), ord("ÿ") + 1)) |
|
|
) |
|
|
cs = bs[:] |
|
|
n = 0 |
|
|
for b in range(2**8): |
|
|
if b not in bs: |
|
|
bs.append(b) |
|
|
cs.append(2**8 + n) |
|
|
n += 1 |
|
|
cs = [chr(n) for n in cs] |
|
|
return dict(zip(bs, cs)) |
|
|
|
|
|
|
|
|
def get_pairs(word): |
|
|
"""Return set of symbol pairs in a word. |
|
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
|
""" |
|
|
pairs = set() |
|
|
prev_char = word[0] |
|
|
for char in word[1:]: |
|
|
pairs.add((prev_char, char)) |
|
|
prev_char = char |
|
|
return pairs |
|
|
|
|
|
|
|
|
def basic_clean(text): |
|
|
text = ftfy.fix_text(text) |
|
|
text = html.unescape(html.unescape(text)) |
|
|
return text.strip() |
|
|
|
|
|
|
|
|
def whitespace_clean(text): |
|
|
text = re.sub(r"\s+", " ", text) |
|
|
text = text.strip() |
|
|
return text |
|
|
|
|
|
|
|
|
def _clean_canonicalize(x): |
|
|
|
|
|
return canonicalize_text(basic_clean(x)) |
|
|
|
|
|
|
|
|
def _clean_lower(x): |
|
|
|
|
|
return whitespace_clean(basic_clean(x)).lower() |
|
|
|
|
|
|
|
|
def _clean_whitespace(x): |
|
|
|
|
|
return whitespace_clean(basic_clean(x)) |
|
|
|
|
|
|
|
|
def get_clean_fn(type: str): |
|
|
if type == "canonicalize": |
|
|
return _clean_canonicalize |
|
|
elif type == "lower": |
|
|
return _clean_lower |
|
|
elif type == "whitespace": |
|
|
return _clean_whitespace |
|
|
else: |
|
|
assert False, f"Invalid clean function ({type})." |
|
|
|
|
|
|
|
|
def canonicalize_text(text, *, keep_punctuation_exact_string=None): |
|
|
"""Returns canonicalized `text` (lowercase and punctuation removed). |
|
|
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 |
|
|
Args: |
|
|
text: string to be canonicalized. |
|
|
keep_punctuation_exact_string: If provided, then this exact string kept. |
|
|
For example providing '{}' will keep any occurrences of '{}' (but will |
|
|
still remove '{' and '}' that appear separately). |
|
|
""" |
|
|
text = text.replace("_", " ") |
|
|
if keep_punctuation_exact_string: |
|
|
text = keep_punctuation_exact_string.join( |
|
|
part.translate(str.maketrans("", "", string.punctuation)) |
|
|
for part in text.split(keep_punctuation_exact_string) |
|
|
) |
|
|
else: |
|
|
text = text.translate(str.maketrans("", "", string.punctuation)) |
|
|
text = text.lower() |
|
|
text = re.sub(r"\s+", " ", text) |
|
|
return text.strip() |
|
|
|
|
|
|
|
|
class SimpleTokenizer(object): |
|
|
def __init__( |
|
|
self, |
|
|
bpe_path: Union[str, os.PathLike], |
|
|
additional_special_tokens: Optional[List[str]] = None, |
|
|
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH, |
|
|
clean: str = "lower", |
|
|
): |
|
|
self.byte_encoder = bytes_to_unicode() |
|
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
|
with g_pathmgr.open(bpe_path, "rb") as fh: |
|
|
bpe_bytes = io.BytesIO(fh.read()) |
|
|
merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n") |
|
|
|
|
|
merges = merges[1 : 49152 - 256 - 2 + 1] |
|
|
merges = [tuple(merge.split()) for merge in merges] |
|
|
vocab = list(bytes_to_unicode().values()) |
|
|
vocab = vocab + [v + "</w>" for v in vocab] |
|
|
for merge in merges: |
|
|
vocab.append("".join(merge)) |
|
|
special_tokens = ["<start_of_text>", "<end_of_text>"] |
|
|
if additional_special_tokens: |
|
|
special_tokens += additional_special_tokens |
|
|
vocab.extend(special_tokens) |
|
|
self.encoder = dict(zip(vocab, range(len(vocab)))) |
|
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
|
self.bpe_ranks = dict(zip(merges, range(len(merges)))) |
|
|
self.cache = {t: t for t in special_tokens} |
|
|
special = "|".join(special_tokens) |
|
|
self.pat = re.compile( |
|
|
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", |
|
|
re.IGNORECASE, |
|
|
) |
|
|
self.vocab_size = len(self.encoder) |
|
|
self.all_special_ids = [self.encoder[t] for t in special_tokens] |
|
|
self.sot_token_id = self.all_special_ids[0] |
|
|
self.eot_token_id = self.all_special_ids[1] |
|
|
self.context_length = context_length |
|
|
self.clean_fn = get_clean_fn(clean) |
|
|
|
|
|
def bpe(self, token): |
|
|
if token in self.cache: |
|
|
return self.cache[token] |
|
|
word = tuple(token[:-1]) + (token[-1] + "</w>",) |
|
|
pairs = get_pairs(word) |
|
|
if not pairs: |
|
|
return token + "</w>" |
|
|
while True: |
|
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) |
|
|
if bigram not in self.bpe_ranks: |
|
|
break |
|
|
first, second = bigram |
|
|
new_word = [] |
|
|
i = 0 |
|
|
while i < len(word): |
|
|
try: |
|
|
j = word.index(first, i) |
|
|
new_word.extend(word[i:j]) |
|
|
i = j |
|
|
except: |
|
|
new_word.extend(word[i:]) |
|
|
break |
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
|
new_word.append(first + second) |
|
|
i += 2 |
|
|
else: |
|
|
new_word.append(word[i]) |
|
|
i += 1 |
|
|
new_word = tuple(new_word) |
|
|
word = new_word |
|
|
if len(word) == 1: |
|
|
break |
|
|
else: |
|
|
pairs = get_pairs(word) |
|
|
word = " ".join(word) |
|
|
self.cache[token] = word |
|
|
return word |
|
|
|
|
|
def encode(self, text): |
|
|
bpe_tokens = [] |
|
|
text = self.clean_fn(text) |
|
|
for token in re.findall(self.pat, text): |
|
|
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) |
|
|
bpe_tokens.extend( |
|
|
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ") |
|
|
) |
|
|
return bpe_tokens |
|
|
|
|
|
def decode(self, tokens): |
|
|
text = "".join([self.decoder[token] for token in tokens]) |
|
|
text = ( |
|
|
bytearray([self.byte_decoder[c] for c in text]) |
|
|
.decode("utf-8", errors="replace") |
|
|
.replace("</w>", " ") |
|
|
) |
|
|
return text |
|
|
|
|
|
def __call__( |
|
|
self, texts: Union[str, List[str]], context_length: Optional[int] = None |
|
|
) -> torch.LongTensor: |
|
|
"""Returns the tokenized representation of given input string(s) |
|
|
Parameters |
|
|
---------- |
|
|
texts : Union[str, List[str]] |
|
|
An input string or a list of input strings to tokenize |
|
|
context_length : int |
|
|
The context length to use; all CLIP models use 77 as the context length |
|
|
Returns |
|
|
------- |
|
|
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] |
|
|
""" |
|
|
if isinstance(texts, str): |
|
|
texts = [texts] |
|
|
context_length = context_length or self.context_length |
|
|
assert context_length, "Please set a valid context length" |
|
|
all_tokens = [ |
|
|
[self.sot_token_id] + self.encode(text) + [self.eot_token_id] |
|
|
for text in texts |
|
|
] |
|
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
|
for i, tokens in enumerate(all_tokens): |
|
|
if len(tokens) > context_length: |
|
|
tokens = tokens[:context_length] |
|
|
tokens[-1] = self.eot_token_id |
|
|
result[i, : len(tokens)] = torch.tensor(tokens) |
|
|
return result |
|
|
|