Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from numpy.typing import NDArray | |
| from sam3.model.edt import edt_triton | |
| def sample_box_points( | |
| masks: torch.Tensor, | |
| noise: float = 0.1, # SAM default | |
| noise_bound: int = 20, # SAM default | |
| top_left_label: int = 2, | |
| bottom_right_label: int = 3, | |
| ) -> tuple[NDArray, NDArray]: | |
| """ | |
| Sample a noised version of the top left and bottom right corners of a given `bbox` | |
| Inputs: | |
| - masks: [B, 1, H, W] tensor | |
| - noise: noise as a fraction of box width and height, dtype=float | |
| - noise_bound: maximum amount of noise (in pure pixels), dtype=int | |
| Returns: | |
| - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float | |
| - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32 | |
| """ | |
| device = masks.device | |
| box_coords = mask_to_box(masks) | |
| B, _, H, W = masks.shape | |
| box_labels = torch.tensor( | |
| [top_left_label, bottom_right_label], dtype=torch.int, device=device | |
| ).repeat(B) | |
| if noise > 0.0: | |
| if not isinstance(noise_bound, torch.Tensor): | |
| noise_bound = torch.tensor(noise_bound, device=device) | |
| bbox_w = box_coords[..., 2] - box_coords[..., 0] | |
| bbox_h = box_coords[..., 3] - box_coords[..., 1] | |
| max_dx = torch.min(bbox_w * noise, noise_bound) | |
| max_dy = torch.min(bbox_h * noise, noise_bound) | |
| box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1 | |
| box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1) | |
| box_coords = box_coords + box_noise | |
| img_bounds = ( | |
| torch.tensor([W, H, W, H], device=device) - 1 | |
| ) # uncentered pixel coords | |
| box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping | |
| box_coords = box_coords.reshape(-1, 2, 2) # always 2 points | |
| box_labels = box_labels.reshape(-1, 2) | |
| return box_coords, box_labels | |
| def mask_to_box(masks: torch.Tensor): | |
| """ | |
| compute bounding box given an input mask | |
| Inputs: | |
| - masks: [B, 1, H, W] tensor | |
| Returns: | |
| - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor | |
| """ | |
| B, _, h, w = masks.shape | |
| device = masks.device | |
| mask_area = masks.sum(dim=(-1, -2)) | |
| xs = torch.arange(w, device=device, dtype=torch.int32) | |
| ys = torch.arange(h, device=device, dtype=torch.int32) | |
| grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy") | |
| grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w) | |
| grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w) | |
| min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1) | |
| max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1) | |
| min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1) | |
| max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1) | |
| bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1) | |
| bbox_coords = torch.where( | |
| mask_area[..., None] > 0, bbox_coords, torch.zeros_like(bbox_coords) | |
| ) | |
| return bbox_coords | |
| def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1): | |
| """ | |
| Sample `num_pt` random points (along with their labels) independently from the error regions. | |
| Inputs: | |
| - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool | |
| - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None | |
| - num_pt: int, number of points to sample independently for each of the B error maps | |
| Outputs: | |
| - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point | |
| - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means | |
| negative clicks | |
| """ | |
| if pred_masks is None: # if pred_masks is not provided, treat it as empty | |
| pred_masks = torch.zeros_like(gt_masks) | |
| assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 | |
| assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape | |
| assert num_pt >= 0 | |
| B, _, H_im, W_im = gt_masks.shape | |
| device = gt_masks.device | |
| # false positive region, a new point sampled in this region should have | |
| # negative label to correct the FP error | |
| fp_masks = ~gt_masks & pred_masks | |
| # false negative region, a new point sampled in this region should have | |
| # positive label to correct the FN error | |
| fn_masks = gt_masks & ~pred_masks | |
| # whether the prediction completely match the ground-truth on each mask | |
| all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2) | |
| all_correct = all_correct[..., None, None] | |
| # channel 0 is FP map, while channel 1 is FN map | |
| pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device) | |
| # sample a negative new click from FP region or a positive new click | |
| # from FN region, depend on where the maximum falls, | |
| # and in case the predictions are all correct (no FP or FN), we just | |
| # sample a negative click from the background region | |
| pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks) | |
| pts_noise[..., 1] *= fn_masks | |
| pts_idx = pts_noise.flatten(2).argmax(dim=2) | |
| labels = (pts_idx % 2).to(torch.int32) | |
| pts_idx = pts_idx // 2 | |
| pts_x = pts_idx % W_im | |
| pts_y = pts_idx // W_im | |
| points = torch.stack([pts_x, pts_y], dim=2).to(torch.float) | |
| return points, labels | |
| def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True): | |
| """ | |
| Sample 1 random point (along with its label) from the center of each error region, | |
| that is, the point with the largest distance to the boundary of each error region. | |
| This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py | |
| Inputs: | |
| - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool | |
| - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None | |
| - padding: if True, pad with boundary of 1 px for distance transform | |
| Outputs: | |
| - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point | |
| - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks | |
| """ | |
| if pred_masks is None: | |
| pred_masks = torch.zeros_like(gt_masks) | |
| assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 | |
| assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape | |
| B, _, H, W = gt_masks.shape | |
| # false positive region, a new point sampled in this region should have | |
| # negative label to correct the FP error | |
| fp_masks = (~gt_masks & pred_masks).squeeze(1) | |
| # false negative region, a new point sampled in this region should have | |
| # positive label to correct the FN error | |
| fn_masks = (gt_masks & ~pred_masks).squeeze(1) | |
| if padding: | |
| padded_fp_masks = torch.zeros( | |
| B, H + 2, W + 2, dtype=fp_masks.dtype, device=fp_masks.device | |
| ) | |
| padded_fp_masks[:, 1 : H + 1, 1 : W + 1] = fp_masks | |
| padded_fn_masks = torch.zeros( | |
| B, H + 2, W + 2, dtype=fp_masks.dtype, device=fp_masks.device | |
| ) | |
| padded_fn_masks[:, 1 : H + 1, 1 : W + 1] = fn_masks | |
| else: | |
| padded_fp_masks = fp_masks | |
| padded_fn_masks = fn_masks | |
| fn_mask_dt = edt_triton(padded_fn_masks) | |
| fp_mask_dt = edt_triton(padded_fp_masks) | |
| if padding: | |
| fn_mask_dt = fn_mask_dt[:, 1:-1, 1:-1] | |
| fp_mask_dt = fp_mask_dt[:, 1:-1, 1:-1] | |
| fn_max, fn_argmax = fn_mask_dt.reshape(B, -1).max(dim=-1) | |
| fp_max, fp_argmax = fp_mask_dt.reshape(B, -1).max(dim=-1) | |
| is_positive = fn_max > fp_max | |
| chosen = torch.where(is_positive, fn_argmax, fp_argmax) | |
| points_x = chosen % W | |
| points_y = chosen // W | |
| labels = is_positive.long() | |
| points = torch.stack([points_x, points_y], -1) | |
| return points.unsqueeze(1), labels.unsqueeze(1) | |
| def sample_one_point_from_error_center_slow(gt_masks, pred_masks, padding=True): | |
| """ | |
| Sample 1 random point (along with its label) from the center of each error region, | |
| that is, the point with the largest distance to the boundary of each error region. | |
| This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py | |
| Inputs: | |
| - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool | |
| - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None | |
| - padding: if True, pad with boundary of 1 px for distance transform | |
| Outputs: | |
| - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point | |
| - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks | |
| """ | |
| import cv2 # delay OpenCV import to avoid unnecessary dependency | |
| if pred_masks is None: | |
| pred_masks = torch.zeros_like(gt_masks) | |
| assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 | |
| assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape | |
| B, _, _, W_im = gt_masks.shape | |
| device = gt_masks.device | |
| # false positive region, a new point sampled in this region should have | |
| # negative label to correct the FP error | |
| fp_masks = ~gt_masks & pred_masks | |
| # false negative region, a new point sampled in this region should have | |
| # positive label to correct the FN error | |
| fn_masks = gt_masks & ~pred_masks | |
| fp_masks = fp_masks.cpu().numpy() | |
| fn_masks = fn_masks.cpu().numpy() | |
| points = torch.zeros(B, 1, 2, dtype=torch.float) | |
| labels = torch.ones(B, 1, dtype=torch.int32) | |
| for b in range(B): | |
| fn_mask = fn_masks[b, 0] | |
| fp_mask = fp_masks[b, 0] | |
| if padding: | |
| fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant") | |
| fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant") | |
| # compute the distance of each point in FN/FP region to its boundary | |
| fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0) | |
| fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0) | |
| if padding: | |
| fn_mask_dt = fn_mask_dt[1:-1, 1:-1] | |
| fp_mask_dt = fp_mask_dt[1:-1, 1:-1] | |
| # take the point in FN/FP region with the largest distance to its boundary | |
| fn_mask_dt_flat = fn_mask_dt.reshape(-1) | |
| fp_mask_dt_flat = fp_mask_dt.reshape(-1) | |
| fn_argmax = np.argmax(fn_mask_dt_flat) | |
| fp_argmax = np.argmax(fp_mask_dt_flat) | |
| is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax] | |
| pt_idx = fn_argmax if is_positive else fp_argmax | |
| points[b, 0, 0] = pt_idx % W_im # x | |
| points[b, 0, 1] = pt_idx // W_im # y | |
| labels[b, 0] = int(is_positive) | |
| points = points.to(device) | |
| labels = labels.to(device) | |
| return points, labels | |
| def get_next_point(gt_masks, pred_masks, method): | |
| if method == "uniform": | |
| return sample_random_points_from_errors(gt_masks, pred_masks) | |
| elif method == "center": | |
| return sample_one_point_from_error_center(gt_masks, pred_masks) | |
| else: | |
| raise ValueError(f"unknown sampling method {method}") | |
| def select_closest_cond_frames( | |
| frame_idx, cond_frame_outputs, max_cond_frame_num, keep_first_cond_frame=False | |
| ): | |
| """ | |
| Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` | |
| that are temporally closest to the current frame at `frame_idx`. Here, we take | |
| - a) the closest conditioning frame before `frame_idx` (if any); | |
| - b) the closest conditioning frame after `frame_idx` (if any); | |
| - c) any other temporally closest conditioning frames until reaching a total | |
| of `max_cond_frame_num` conditioning frames. | |
| Outputs: | |
| - selected_outputs: selected items (keys & values) from `cond_frame_outputs`. | |
| - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. | |
| """ | |
| if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: | |
| selected_outputs = cond_frame_outputs | |
| unselected_outputs = {} | |
| else: | |
| assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" | |
| selected_outputs = {} | |
| if keep_first_cond_frame: | |
| idx_first = min( | |
| (t for t in cond_frame_outputs if t < frame_idx), default=None | |
| ) | |
| if idx_first is None: | |
| # Maybe we are tracking in reverse | |
| idx_first = max( | |
| (t for t in cond_frame_outputs if t > frame_idx), default=None | |
| ) | |
| if idx_first is not None: | |
| selected_outputs[idx_first] = cond_frame_outputs[idx_first] | |
| # the closest conditioning frame before `frame_idx` (if any) | |
| idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) | |
| if idx_before is not None: | |
| selected_outputs[idx_before] = cond_frame_outputs[idx_before] | |
| # the closest conditioning frame after `frame_idx` (if any) | |
| idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) | |
| if idx_after is not None: | |
| selected_outputs[idx_after] = cond_frame_outputs[idx_after] | |
| # add other temporally closest conditioning frames until reaching a total | |
| # of `max_cond_frame_num` conditioning frames. | |
| num_remain = max_cond_frame_num - len(selected_outputs) | |
| inds_remain = sorted( | |
| (t for t in cond_frame_outputs if t not in selected_outputs), | |
| key=lambda x: abs(x - frame_idx), | |
| )[:num_remain] | |
| selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) | |
| unselected_outputs = { | |
| t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs | |
| } | |
| return selected_outputs, unselected_outputs | |
| def get_1d_sine_pe(pos_inds, dim, temperature=10000): | |
| """ | |
| Get 1D sine positional embedding as in the original Transformer paper. | |
| """ | |
| pe_dim = dim // 2 | |
| dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) | |
| dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) | |
| pos_embed = pos_inds.unsqueeze(-1) / dim_t | |
| pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) | |
| return pos_embed | |
| def get_best_gt_match_from_multimasks(pred_multimasks, gt_masks, pred_scores=None): | |
| """ | |
| Get the mask with the best match to GT masks (based on IoU) from pred_multimasks. | |
| Optionally, use `pred_scores` to break ties in case all IoUs are zeros. | |
| """ | |
| assert pred_multimasks.ndim == 4 and gt_masks.ndim == 4 | |
| if pred_multimasks.size(1) == 1: | |
| return pred_multimasks # only a single mask channel, nothing to select | |
| pred_multimasks_binary = pred_multimasks > 0 | |
| area_i = torch.sum(pred_multimasks_binary & gt_masks, dim=(2, 3)).float() | |
| area_u = torch.sum(pred_multimasks_binary | gt_masks, dim=(2, 3)).float() | |
| ious = area_i / torch.clamp(area_u, min=1.0) | |
| # In case all IoUs are zeros (e.g. because the GT mask is empty), use pred_scores | |
| # to break ties and select the best mask | |
| if pred_scores is not None: | |
| has_nonzero_ious = torch.any(ious > 0).expand_as(ious) | |
| scores = torch.where(has_nonzero_ious, ious, pred_scores) | |
| else: | |
| scores = ious | |
| # Finally, take the best mask prediction (with the highest score) | |
| best_scores_inds = torch.argmax(scores, dim=-1) | |
| batch_inds = torch.arange(scores.size(0), device=scores.device) | |
| best_pred_mask = pred_multimasks[batch_inds, best_scores_inds].unsqueeze(1) | |
| return best_pred_mask | |
| def fill_holes_in_mask_scores(mask, max_area, fill_holes=True, remove_sprinkles=True): | |
| """ | |
| A post processor to fill small holes in mask scores with area under `max_area`. | |
| Holes are those small connected components in either background or foreground. | |
| Note that it relies on the "cc_torch" package to find connected components fast. You can | |
| install it via the following command (`TORCH_CUDA_ARCH_LIST=8.0` is for A100 GPUs): | |
| ``` | |
| pip uninstall -y cc_torch; TORCH_CUDA_ARCH_LIST=8.0 9.0 pip install git+https://github.com/ronghanghu/cc_torch | |
| ``` | |
| Otherwise, it will fallback to a slightly slower triton implementation, or skimage if the tensor is on cpu | |
| """ | |
| if max_area <= 0: | |
| return mask # nothing to fill in this case | |
| if fill_holes: | |
| # We remove small connected components in background by changing them to foreground | |
| # with a small positive mask score (0.1). | |
| mask_bg = mask <= 0 | |
| bg_area_thresh = max_area | |
| _, areas_bg = _get_connected_components_with_padding(mask_bg) | |
| small_components_bg = mask_bg & (areas_bg <= bg_area_thresh) | |
| mask = torch.where(small_components_bg, 0.1, mask) | |
| if remove_sprinkles: | |
| # We remove small connected components in foreground by changing them to background | |
| # with a small negative mask score (-0.1). Here we only remove connected components | |
| # whose areas are under both `max_area` and half of the entire mask's area. This | |
| # removes sprinkles while avoids filtering out tiny objects that we want to track. | |
| mask_fg = mask > 0 | |
| fg_area_thresh = torch.sum(mask_fg, dim=(2, 3), keepdim=True, dtype=torch.int32) | |
| fg_area_thresh.floor_divide_(2).clamp_(max=max_area) | |
| _, areas_fg = _get_connected_components_with_padding(mask_fg) | |
| small_components_fg = mask_fg & (areas_fg <= fg_area_thresh) | |
| mask = torch.where(small_components_fg, -0.1, mask) | |
| return mask | |
| def _get_connected_components_with_padding(mask): | |
| """Get connected components from masks (possibly padding them to an even size).""" | |
| from sam3.perflib.connected_components import connected_components | |
| mask = mask.to(torch.uint8) | |
| _, _, H, W = mask.shape | |
| # make sure both height and width are even (to be compatible with cc_torch) | |
| pad_h = H % 2 | |
| pad_w = W % 2 | |
| if pad_h == 0 and pad_w == 0: | |
| labels, counts = connected_components(mask) | |
| else: | |
| # pad the mask to make its height and width even | |
| # padding format is (padding_left,padding_right,padding_top,padding_bottom) | |
| mask_pad = F.pad(mask, (0, pad_w, 0, pad_h), mode="constant", value=0) | |
| labels, counts = connected_components(mask_pad) | |
| labels = labels[:, :, :H, :W] | |
| counts = counts[:, :, :H, :W] | |
| return labels, counts | |