Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
import re | |
from PIL import Image | |
import os | |
import numpy as np | |
import spaces | |
model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval() | |
processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True) | |
TITLE = "# [Florence-2 SD3 Long Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner/)" | |
DESCRIPTION = "[Florence-2 Base](https://huggingface.co/microsoft/Florence-2-base-ft) fine-tuned on Long SD3 Prompt and Image pairs. Check above link for datasets that are used for fine-tuning." | |
def modify_caption(caption: str) -> str: | |
special_patterns = [ | |
(r'The image shows ', ''), # 匹配 "The image shows " 并替换为空字符串 | |
(r'The image is .*? of ', ''), # 匹配 "The image is .*? of" 并替换为空字符串 | |
(r'of the .*? is', 'is') # 匹配 "of the .*? is" 并替换为 "is" | |
] | |
# 对每个特殊模式进行替换 | |
for pattern, replacement in special_patterns: | |
caption = re.sub(pattern, replacement, caption, flags=re.IGNORECASE) | |
no_blank_lines = re.sub(r'\n\s*\n', '\n', caption) | |
# 合并内容 | |
merged_content = ' '.join(no_blank_lines.strip().splitlines()) | |
return merged_content if merged_content != caption else caption | |
def process_image(image): | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
elif isinstance(image, str): | |
image = Image.open(image) | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
prompt = "<MORE_DETAILED_CAPTION>" | |
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
num_beams=3 | |
) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) | |
return modify_caption(parsed_answer["<MORE_DETAILED_CAPTION>"]) | |
def extract_frames(image_path, output_folder): | |
with Image.open(image_path) as img: | |
base_name = os.path.splitext(os.path.basename(image_path))[0] | |
frame_paths = [] | |
try: | |
for i in range(0, img.n_frames): | |
img.seek(i) | |
frame_path = os.path.join(output_folder, f"{base_name}_frame_{i:03d}.png") | |
img.save(frame_path) | |
frame_paths.append(frame_path) | |
except EOFError: | |
pass # We've reached the end of the sequence | |
return frame_paths | |
def process_folder(folder_path): | |
if not os.path.isdir(folder_path): | |
return "Invalid folder path." | |
processed_files = [] | |
skipped_files = [] | |
for filename in os.listdir(folder_path): | |
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp', '.heic')): | |
image_path = os.path.join(folder_path, filename) | |
txt_filename = os.path.splitext(filename)[0] + '.txt' | |
txt_path = os.path.join(folder_path, txt_filename) | |
# Check if the corresponding text file already exists | |
if os.path.exists(txt_path): | |
skipped_files.append(f"Skipped {filename} (text file already exists)") | |
continue | |
# Check if the image has multiple frames | |
with Image.open(image_path) as img: | |
if getattr(img, "is_animated", False) and img.n_frames > 1: | |
# Extract frames | |
frames = extract_frames(image_path, folder_path) | |
for frame_path in frames: | |
frame_txt_filename = os.path.splitext(os.path.basename(frame_path))[0] + '.txt' | |
frame_txt_path = os.path.join(folder_path, frame_txt_filename) | |
# Check if the corresponding text file for the frame already exists | |
if os.path.exists(frame_txt_path): | |
skipped_files.append(f"Skipped {os.path.basename(frame_path)} (text file already exists)") | |
continue | |
caption = process_image(frame_path) | |
with open(frame_txt_path, 'w', encoding='utf-8') as f: | |
f.write(caption) | |
processed_files.append(f"Processed {os.path.basename(frame_path)} -> {frame_txt_filename}") | |
else: | |
# Process single image | |
caption = process_image(image_path) | |
with open(txt_path, 'w', encoding='utf-8') as f: | |
f.write(caption) | |
processed_files.append(f"Processed {filename} -> {txt_filename}") | |
result = "\n".join(processed_files + skipped_files) | |
return result if result else "No image files found or all files were skipped in the specified folder." | |
css = """ | |
#output { height: 500px; overflow: auto; border: 1px solid #ccc; } | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(TITLE) | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Single Image Processing"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
gr.Examples( | |
[["image1.jpg"], ["image2.jpg"], ["image3.png"], ["image4.jpg"], ["image5.jpg"], ["image6.PNG"]], | |
inputs=[input_img], | |
outputs=[output_text], | |
fn=process_image, | |
label='Try captioning on below examples' | |
) | |
submit_btn.click(process_image, [input_img], [output_text]) | |
with gr.Tab(label="Batch Processing"): | |
with gr.Row(): | |
folder_input = gr.Textbox(label="Input Folder Path") | |
batch_submit_btn = gr.Button(value="Process Folder") | |
batch_output = gr.Textbox(label="Batch Processing Results", lines=10) | |
batch_submit_btn.click(process_folder, [folder_input], [batch_output]) | |
demo.launch(debug=True) |