Rename linear_mapping.py to clip_gpt2.py
Browse files- linear_mapping.py → clip_gpt2.py +17 -35
linear_mapping.py → clip_gpt2.py
RENAMED
@@ -1,41 +1,25 @@
|
|
1 |
-
from config import
|
2 |
from transformers import (
|
3 |
-
GPT2TokenizerFast, GPT2LMHeadModel,
|
4 |
-
CLIPVisionModel,
|
|
|
5 |
AutoConfig, CLIPVisionConfig
|
6 |
)
|
7 |
from transformers.models.gpt2.modeling_gpt2 import GPT2DoubleHeadsModelOutput
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
from typing import List, Optional, Union, Tuple, Dict
|
11 |
-
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
12 |
-
from torchvision.transforms.functional import InterpolationMode
|
13 |
|
14 |
-
|
15 |
-
class Transform(torch.nn.Module):
|
16 |
-
def __init__(self, image_size, mean, std):
|
17 |
-
super().__init__()
|
18 |
-
self.transforms = torch.nn.Sequential(
|
19 |
-
Resize([image_size], interpolation=InterpolationMode.BICUBIC, antialias=True),
|
20 |
-
CenterCrop(image_size),
|
21 |
-
ConvertImageDtype(torch.float32),
|
22 |
-
Normalize(mean, std),
|
23 |
-
)
|
24 |
-
|
25 |
-
def forward(self, x) -> torch.Tensor:
|
26 |
-
"""`x` should be an instance of `PIL.Image.Image`"""
|
27 |
-
with torch.no_grad():
|
28 |
-
x = self.transforms(x)
|
29 |
-
return x
|
30 |
|
31 |
|
32 |
-
class
|
33 |
"""
|
34 |
-
A combination of ImageProcessor and GPT2TokenizerFast
|
35 |
"""
|
36 |
|
37 |
-
def __init__(self, config:
|
38 |
-
self.image_processor =
|
39 |
self.tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
40 |
self.add_image_token = config.add_image_token
|
41 |
if config.add_image_token:
|
@@ -103,7 +87,7 @@ class ImagePrefix(nn.Module):
|
|
103 |
Converts pixel values to prefix image prompts that are later fed to a LLM
|
104 |
"""
|
105 |
|
106 |
-
def __init__(self, config:
|
107 |
super().__init__()
|
108 |
clip_config = CLIPVisionConfig.from_pretrained(config.image_model)
|
109 |
|
@@ -126,21 +110,16 @@ class ImagePrefix(nn.Module):
|
|
126 |
return self.ln(prefix_prompts)
|
127 |
|
128 |
|
129 |
-
class
|
130 |
|
131 |
-
def __init__(self, config:
|
132 |
super().__init__()
|
133 |
self.image_prefix = ImagePrefix(config)
|
134 |
self.language_model = GPT2LMHeadModel(AutoConfig.from_pretrained(config.text_model))
|
135 |
if config.text_from_pretrained:
|
136 |
self.language_model = self.language_model.from_pretrained(config.text_model)
|
137 |
-
self.processor = LinearMappingProcessor(config)
|
138 |
-
self.tokenizer = self.processor.tokenizer
|
139 |
-
self.image_processor = self.processor.image_processor
|
140 |
-
self.add_image_token = config.add_image_token
|
141 |
-
if config.add_image_token:
|
142 |
-
self.language_model.resize_token_embeddings(len(self.tokenizer))
|
143 |
|
|
|
144 |
if config.freeze_text_model:
|
145 |
for module in self.language_model.modules():
|
146 |
if not isinstance(module, nn.LayerNorm) or config.freeze_ln:
|
@@ -179,7 +158,7 @@ class LinearMapping(nn.Module):
|
|
179 |
|
180 |
for label in labels:
|
181 |
for k, token in enumerate(label):
|
182 |
-
if token ==
|
183 |
label[k + 1:] = -100
|
184 |
break
|
185 |
return {"hidden_states": inputs_embeddings, "labels": labels.to(dtype=torch.int64)}
|
@@ -208,6 +187,8 @@ class LinearMapping(nn.Module):
|
|
208 |
pixel_values: Optional[torch.Tensor] = None,
|
209 |
**kwargs
|
210 |
):
|
|
|
|
|
211 |
if pixel_values is None:
|
212 |
return self.language_model.generate(
|
213 |
input_ids=input_ids,
|
@@ -249,6 +230,7 @@ class LinearMapping(nn.Module):
|
|
249 |
)
|
250 |
if past_input_ids is not None:
|
251 |
generated_token_ids = torch.cat([past_input_ids, generated_token_ids], dim=-1)
|
|
|
252 |
return generated_token_ids
|
253 |
|
254 |
def forward(
|
|
|
1 |
+
from config import CLIPGPT2Config
|
2 |
from transformers import (
|
3 |
+
GPT2TokenizerFast, GPT2LMHeadModel,
|
4 |
+
CLIPVisionModel, BatchEncoding,
|
5 |
+
CLIPImageProcessor,
|
6 |
AutoConfig, CLIPVisionConfig
|
7 |
)
|
8 |
from transformers.models.gpt2.modeling_gpt2 import GPT2DoubleHeadsModelOutput
|
9 |
import torch
|
10 |
import torch.nn as nn
|
11 |
from typing import List, Optional, Union, Tuple, Dict
|
|
|
|
|
12 |
|
13 |
+
EOS_TOKEN_ID = 50256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
+
class CLIPGPT2Processor:
|
17 |
"""
|
18 |
+
A combination of CLIP ImageProcessor and GPT2TokenizerFast
|
19 |
"""
|
20 |
|
21 |
+
def __init__(self, config: CLIPGPT2Config):
|
22 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(config.image_model)
|
23 |
self.tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
24 |
self.add_image_token = config.add_image_token
|
25 |
if config.add_image_token:
|
|
|
87 |
Converts pixel values to prefix image prompts that are later fed to a LLM
|
88 |
"""
|
89 |
|
90 |
+
def __init__(self, config: CLIPGPT2Config):
|
91 |
super().__init__()
|
92 |
clip_config = CLIPVisionConfig.from_pretrained(config.image_model)
|
93 |
|
|
|
110 |
return self.ln(prefix_prompts)
|
111 |
|
112 |
|
113 |
+
class CLIPGPT2(nn.Module):
|
114 |
|
115 |
+
def __init__(self, config: CLIPGPT2Config):
|
116 |
super().__init__()
|
117 |
self.image_prefix = ImagePrefix(config)
|
118 |
self.language_model = GPT2LMHeadModel(AutoConfig.from_pretrained(config.text_model))
|
119 |
if config.text_from_pretrained:
|
120 |
self.language_model = self.language_model.from_pretrained(config.text_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
self.language_model.resize_token_embeddings(config.vocab_size)
|
123 |
if config.freeze_text_model:
|
124 |
for module in self.language_model.modules():
|
125 |
if not isinstance(module, nn.LayerNorm) or config.freeze_ln:
|
|
|
158 |
|
159 |
for label in labels:
|
160 |
for k, token in enumerate(label):
|
161 |
+
if token == EOS_TOKEN_ID:
|
162 |
label[k + 1:] = -100
|
163 |
break
|
164 |
return {"hidden_states": inputs_embeddings, "labels": labels.to(dtype=torch.int64)}
|
|
|
187 |
pixel_values: Optional[torch.Tensor] = None,
|
188 |
**kwargs
|
189 |
):
|
190 |
+
in_training = self.training
|
191 |
+
self.eval()
|
192 |
if pixel_values is None:
|
193 |
return self.language_model.generate(
|
194 |
input_ids=input_ids,
|
|
|
230 |
)
|
231 |
if past_input_ids is not None:
|
232 |
generated_token_ids = torch.cat([past_input_ids, generated_token_ids], dim=-1)
|
233 |
+
self.train(in_training)
|
234 |
return generated_token_ids
|
235 |
|
236 |
def forward(
|