Spaces:
Runtime error
Runtime error
| ### ----------------------------- ### | |
| ### libraries ### | |
| ### ----------------------------- ### | |
| import gradio as gr | |
| import pandas as pd | |
| import numpy as np | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn import metrics | |
| ### ------------------------------ ### | |
| ### data transformation ### | |
| ### ------------------------------ ### | |
| # load dataset | |
| uncleaned_data = pd.read_csv('data.csv') | |
| # remove timestamp from dataset (always first column) | |
| uncleaned_data = uncleaned_data.iloc[: , 1:] | |
| data = pd.DataFrame() | |
| # keep track of which columns are categorical and what | |
| # those columns' value mappings are | |
| # structure: {colname1: {...}, colname2: {...} } | |
| cat_value_dicts = {} | |
| final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1] | |
| # for each column... | |
| for (colname, colval) in uncleaned_data.iteritems(): | |
| # check if col is already a number; if so, add col directly | |
| # to new dataframe and skip to next column | |
| if isinstance(colval.values[0], (np.integer, float)): | |
| data[colname] = uncleaned_data[colname].copy() | |
| continue | |
| # structure: {0: "lilac", 1: "blue", ...} | |
| new_dict = {} | |
| val = 0 # first index per column | |
| transformed_col_vals = [] # new numeric datapoints | |
| # if not, for each item in that column... | |
| for (row, item) in enumerate(colval.values): | |
| # if item is not in this col's dict... | |
| if item not in new_dict: | |
| new_dict[item] = val | |
| val += 1 | |
| # then add numerical value to transformed dataframe | |
| transformed_col_vals.append(new_dict[item]) | |
| # reverse dictionary only for final col (0, 1) => (vals) | |
| if colname == final_colname: | |
| new_dict = {value : key for (key, value) in new_dict.items()} | |
| cat_value_dicts[colname] = new_dict | |
| data[colname] = transformed_col_vals | |
| ### -------------------------------- ### | |
| ### model training ### | |
| ### -------------------------------- ### | |
| # select features and predicton; automatically selects last column as prediction | |
| cols = len(data.columns) | |
| num_features = cols - 1 | |
| x = data.iloc[: , :num_features] | |
| y = data.iloc[: , num_features:] | |
| # split data into training and testing sets | |
| x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) | |
| # instantiate the model (using default parameters) | |
| model = LogisticRegression() | |
| model.fit(x_train, y_train.values.ravel()) | |
| y_pred = model.predict(x_test) | |
| ### -------------------------------- ### | |
| ### article generation ### | |
| ### -------------------------------- ### | |
| # borrow file reading function from reader.py | |
| def get_feat(): | |
| feats = [abs(x) for x in model.coef_[0]] | |
| max_val = max(feats) | |
| idx = feats.index(max_val) | |
| return data.columns[idx] | |
| acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 1)) + "%" | |
| most_imp_feat = get_feat() | |
| # info = get_article(acc, most_imp_feat) | |
| ### ------------------------------- ### | |
| ### interface creation ### | |
| ### ------------------------------- ### | |
| # predictor for generic number of features | |
| def general_predictor(*args): | |
| features = [] | |
| # transform categorical input | |
| for colname, arg in zip(data.columns, args): | |
| if (colname in cat_value_dicts): | |
| features.append(cat_value_dicts[colname][arg]) | |
| else: | |
| features.append(arg) | |
| # predict single datapoint | |
| new_input = [features] | |
| result = model.predict(new_input) | |
| return cat_value_dicts[final_colname][result[0]] | |
| # add data labels to replace those lost via star-args | |
| block = gr.Blocks() | |
| with open('info.md') as f: | |
| with block: | |
| gr.Markdown(f.readline()) | |
| gr.Markdown('Take the quiz to get a personalized recommendation using AI.') | |
| with gr.Row(): | |
| with gr.Group(): | |
| inputls = [] | |
| for colname in data.columns: | |
| # skip last column | |
| if colname == final_colname: | |
| continue | |
| # access categories dict if data is categorical | |
| # otherwise, just use a number input | |
| if colname in cat_value_dicts: | |
| radio_options = list(cat_value_dicts[colname].keys()) | |
| inputls.append(gr.Dropdown(radio_options, type="value", label=colname)) | |
| else: | |
| # add numerical input | |
| inputls.append(gr.Number(label=colname)) | |
| gr.Markdown("<br />") | |
| submit = gr.Button("Click to see your personalized result!", variant="primary") | |
| gr.Markdown("<br />") | |
| output = gr.Textbox(label="Your recommendation:", placeholder="your recommendation will appear here") | |
| submit.click(fn=general_predictor, inputs=inputls, outputs=output) | |
| gr.Markdown("<br />") | |
| with gr.Row(): | |
| with gr.Group(): | |
| gr.Markdown(f"<h3>Accuracy: </h3>{acc}") | |
| with gr.Group(): | |
| gr.Markdown(f"<h3>Most important feature: </h3>{most_imp_feat}") | |
| gr.Markdown("<br />") | |
| with gr.Group(): | |
| gr.Markdown('''⭐ Note that model accuracy is based on the uploaded data.csv and reflects how well the AI model can give correct recommendations for <em>that dataset</em>. Model accuracy and most important feature can be helpful for understanding how the model works, but <em>should not be considered absolute facts about the real world</em>.''') | |
| with gr.Group(): | |
| with open('info.md') as f: | |
| f.readline() | |
| gr.Markdown(f.read()) | |
| # show the interface | |
| block.launch() |