Spaces:
Runtime error
Runtime error
brad
commited on
inital transform interface
Browse files- helpers/models.py +9 -0
- main.py +173 -61
helpers/models.py
CHANGED
|
@@ -20,6 +20,14 @@ class LayerTypes(Enum):
|
|
| 20 |
CONVOLUTIONAL = nn.Conv2d
|
| 21 |
LINEAR = nn.Linear
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
_hook_activations = None
|
| 25 |
|
|
@@ -152,6 +160,7 @@ def get_feature_map_sizes(model, layers, img=None):
|
|
| 152 |
"""
|
| 153 |
feature_map_sizes = [None] * len(layers)
|
| 154 |
if img is None:
|
|
|
|
| 155 |
img = h_manipulation.create_random_image((227, 227),
|
| 156 |
h_manipulation.DatasetNormalizations.CIFAR10_MEAN.value,
|
| 157 |
h_manipulation.DatasetNormalizations.CIFAR10_STD.value).clone().unsqueeze(0)
|
|
|
|
| 20 |
CONVOLUTIONAL = nn.Conv2d
|
| 21 |
LINEAR = nn.Linear
|
| 22 |
|
| 23 |
+
class TransformTypes(Enum):
|
| 24 |
+
PAD = "Pad"
|
| 25 |
+
JITTER = "Jitter"
|
| 26 |
+
RANDOM_SCALE = "Random Scale"
|
| 27 |
+
RANDOM_ROTATE = "Random Rotate"
|
| 28 |
+
AD_JITTER = "Additional Jitter"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
|
| 32 |
_hook_activations = None
|
| 33 |
|
|
|
|
| 160 |
"""
|
| 161 |
feature_map_sizes = [None] * len(layers)
|
| 162 |
if img is None:
|
| 163 |
+
# TODO Remove this and just generates a blank image of 227 by 227
|
| 164 |
img = h_manipulation.create_random_image((227, 227),
|
| 165 |
h_manipulation.DatasetNormalizations.CIFAR10_MEAN.value,
|
| 166 |
h_manipulation.DatasetNormalizations.CIFAR10_STD.value).clone().unsqueeze(0)
|
main.py
CHANGED
|
@@ -10,41 +10,32 @@ from time import sleep
|
|
| 10 |
from lucent.optvis import render
|
| 11 |
from lucent.modelzoo.util import get_model_layers
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# c100="#FFDACC",
|
| 16 |
-
# c200="#FFB699",
|
| 17 |
-
# c300="#FF9166",
|
| 18 |
-
# c400="#FF6D33",
|
| 19 |
-
# c500="#FF4700",
|
| 20 |
-
# c600="#CC3A00",
|
| 21 |
-
# c700="#992B00",
|
| 22 |
-
# c800="#661D00",
|
| 23 |
-
# c900="#330E00",
|
| 24 |
-
# c950="#190700")
|
| 25 |
-
css = """
|
| 26 |
-
div[data-testid="block-label"] {z-index: var(--layer-3)}
|
| 27 |
-
"""
|
| 28 |
|
| 29 |
def main():
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
ft_map_sizes
|
| 38 |
-
thresholds
|
| 39 |
-
|
| 40 |
-
nodeX_max = gr.State(None)
|
| 41 |
-
nodeY_max = gr.State(None)
|
| 42 |
-
node_max = gr.State(None)
|
| 43 |
|
| 44 |
# GUI Elements
|
| 45 |
with gr.Row(): # Upper banner
|
| 46 |
gr.Markdown("""# Feature Visualization Generator\n
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
with gr.Row(): # Lower inputs and outputs
|
| 49 |
with gr.Column(): # Inputs
|
| 50 |
gr.Markdown("""## Model Settings""")
|
|
@@ -108,29 +99,102 @@ def main():
|
|
| 108 |
precision=0,
|
| 109 |
minimum=1,
|
| 110 |
value=200)
|
| 111 |
-
|
| 112 |
-
img_num = gr.Number(label="Image Size",
|
| 113 |
-
info="Image is square (<value> by <value>)",
|
| 114 |
-
precision=0,
|
| 115 |
-
minimum=1,
|
| 116 |
-
value=227)
|
| 117 |
|
| 118 |
with gr.Accordion("Advanced Settings", open=False):
|
| 119 |
-
gr.
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
confirm_btn = gr.Button("Generate", visible=False)
|
| 136 |
|
|
@@ -169,6 +233,35 @@ def main():
|
|
| 169 |
nodeY_num.blur(check_input, inputs=[nodeY_num, nodeY_max])
|
| 170 |
node_num.blur(check_input, inputs=[node_num, node_max])
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
confirm_btn.click(generate,
|
| 173 |
inputs=[lr_sl,
|
| 174 |
epoch_num,
|
|
@@ -182,12 +275,9 @@ def main():
|
|
| 182 |
thresholds,
|
| 183 |
chan_decor_ck,
|
| 184 |
spacial_decor_ck,
|
| 185 |
-
batch_num,
|
| 186 |
sd_num],
|
| 187 |
outputs=[images_gal, thresholds])
|
| 188 |
-
|
| 189 |
-
inputs=thresholds,
|
| 190 |
-
outputs=images_gal)
|
| 191 |
demo.queue().launch()
|
| 192 |
|
| 193 |
|
|
@@ -295,7 +385,7 @@ def on_layer(selected_layer, model_layers, ft_map_sizes, evt: gr.SelectData):
|
|
| 295 |
|
| 296 |
|
| 297 |
def generate(lr, epochs, img_size, channel, nodeX, nodeY, node, selected_layer,
|
| 298 |
-
model, thresholds, chan_decor, spacial_decor,
|
| 299 |
sd_num, progress=gr.Progress(track_tqdm=True)):
|
| 300 |
"""
|
| 301 |
Generates the feature visualizaiton with given parameters and tuning.
|
|
@@ -308,7 +398,6 @@ def generate(lr, epochs, img_size, channel, nodeX, nodeY, node, selected_layer,
|
|
| 308 |
def param_f(): return param.image(img_size,
|
| 309 |
fft=spacial_decor,
|
| 310 |
decorrelate=chan_decor,
|
| 311 |
-
batch=batch_num,
|
| 312 |
sd=sd_num) # Image setup
|
| 313 |
def optimizer(params): return torch.optim.Adam(params, lr=lr)
|
| 314 |
|
|
@@ -344,12 +433,16 @@ def generate(lr, epochs, img_size, channel, nodeX, nodeY, node, selected_layer,
|
|
| 344 |
else: # Layer Specific
|
| 345 |
obj = lambda m: torch.mean(torch.pow(-m(selected_layer[0]).cuda(), torch.tensor(2).cuda())).cuda()
|
| 346 |
thresholds = h_manip.expo_tuple(epochs, 6)
|
|
|
|
|
|
|
|
|
|
| 347 |
img = np.array(render.render_vis(model,
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
|
|
|
| 353 |
|
| 354 |
return gr.Gallery.update(img), thresholds
|
| 355 |
|
|
@@ -357,9 +450,28 @@ def generate(lr, epochs, img_size, channel, nodeX, nodeY, node, selected_layer,
|
|
| 357 |
def update_img_label(thresholds, evt: gr.SelectData):
|
| 358 |
return gr.Gallery.update(label='Epoch ' + str(thresholds[evt.index]), show_label=True)
|
| 359 |
|
|
|
|
| 360 |
def check_input(curr, maxx):
|
| 361 |
if curr > maxx:
|
| 362 |
raise gr.Error(f"""Value {curr} is higher then maximum of {maxx}""")
|
| 363 |
|
| 364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
main()
|
|
|
|
| 10 |
from lucent.optvis import render
|
| 11 |
from lucent.modelzoo.util import get_model_layers
|
| 12 |
|
| 13 |
+
# Custom css
|
| 14 |
+
css = """div[data-testid="block-label"] {z-index: var(--layer-3)}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def main():
|
| 17 |
+
with gr.Blocks(title="Feature Visualization Generator",
|
| 18 |
+
css=css,
|
| 19 |
+
theme=gr.themes.Soft(primary_hue="blue",
|
| 20 |
+
secondary_hue="blue",
|
| 21 |
+
)) as demo:
|
| 22 |
+
|
| 23 |
+
# Session state init
|
| 24 |
+
model, model_layers, selected_layer, ft_map_sizes, \
|
| 25 |
+
thresholds, channel_max, nodeX_max, nodeY_max, \
|
| 26 |
+
node_max = (gr.State(None) for _ in range(9))
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# GUI Elements
|
| 29 |
with gr.Row(): # Upper banner
|
| 30 |
gr.Markdown("""# Feature Visualization Generator\n
|
| 31 |
+
Feature Visualizations (FV's) answer questions
|
| 32 |
+
about what a network—or parts of a network—are
|
| 33 |
+
looking for by generating examples.
|
| 34 |
+
([Read more about it here](https://distill.pub/2017/feature-visualization/))
|
| 35 |
+
This generator aims to make it easier to explore
|
| 36 |
+
different concepts used in FV generation and allow
|
| 37 |
+
for experimentation.\n\n
|
| 38 |
+
**Start by selecting a model from the drop down.**""")
|
| 39 |
with gr.Row(): # Lower inputs and outputs
|
| 40 |
with gr.Column(): # Inputs
|
| 41 |
gr.Markdown("""## Model Settings""")
|
|
|
|
| 99 |
precision=0,
|
| 100 |
minimum=1,
|
| 101 |
value=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
with gr.Accordion("Advanced Settings", open=False):
|
| 104 |
+
with gr.Column(variant="panel"):
|
| 105 |
+
gr.Markdown("""## Image Settings""")
|
| 106 |
+
img_num = gr.Number(label="Image Size",
|
| 107 |
+
info="Image is square (<value> by <value>)",
|
| 108 |
+
precision=0,
|
| 109 |
+
minimum=1,
|
| 110 |
+
value=227)
|
| 111 |
+
chan_decor_ck = gr.Checkbox(label="Channel Decorrelation",
|
| 112 |
+
info="Reduces channel-to-channel correlations",
|
| 113 |
+
value=True)
|
| 114 |
+
spacial_decor_ck = gr.Checkbox(label="Spacial Decorrelation (FFT)",
|
| 115 |
+
info="Reduces pixel-to-pixel correlations",
|
| 116 |
+
value=True)
|
| 117 |
+
sd_num = gr.Number(label="Standard Deviation",
|
| 118 |
+
info="The STD of the randomly generated starter image",
|
| 119 |
+
value=0.01)
|
| 120 |
+
|
| 121 |
+
with gr.Column(variant="panel"):
|
| 122 |
+
gr.Markdown("""## Transform Settings (WIP)""")
|
| 123 |
+
preprocess_ck = gr.Checkbox(label="Preprocess",
|
| 124 |
+
info="Enable or disable preprocessing via transformations",
|
| 125 |
+
value=True,
|
| 126 |
+
interactive=True)
|
| 127 |
+
transform_choices = [t.value for t in h_models.TransformTypes]
|
| 128 |
+
transforms_dd = gr.Dropdown(label="Applied Transforms",
|
| 129 |
+
info="Transforms to apply",
|
| 130 |
+
choices=transform_choices,
|
| 131 |
+
multiselect=True,
|
| 132 |
+
value=transform_choices,
|
| 133 |
+
interactive=True)
|
| 134 |
+
|
| 135 |
+
# Transform specific settings
|
| 136 |
+
pad_col = gr.Column()
|
| 137 |
+
with pad_col:
|
| 138 |
+
gr.Markdown("""### Pad Settings""")
|
| 139 |
+
with gr.Row():
|
| 140 |
+
pad_num = gr.Number(label="Padding",
|
| 141 |
+
info="How many pixels of padding",
|
| 142 |
+
minimum=0,
|
| 143 |
+
value=12,
|
| 144 |
+
precision=0,
|
| 145 |
+
interactive=True)
|
| 146 |
+
mode_rad = gr.Radio(label="Mode",
|
| 147 |
+
info="Constant fills padded pixels with a value. Reflect fills with edge pixels",
|
| 148 |
+
choices=["Constant", "Reflect"],
|
| 149 |
+
value="Constant",
|
| 150 |
+
interactive=True)
|
| 151 |
+
constant_num = gr.Number(label="Constant Fill Value",
|
| 152 |
+
info="Value to fill padded pixels",
|
| 153 |
+
value=0.5,
|
| 154 |
+
interactive=True)
|
| 155 |
+
|
| 156 |
+
jitter_col = gr.Column()
|
| 157 |
+
with jitter_col:
|
| 158 |
+
gr.Markdown("""### Jitter Settings""")
|
| 159 |
+
with gr.Row():
|
| 160 |
+
jitter_num = gr.Number(label="Jitter",
|
| 161 |
+
info="How much to jitter image by",
|
| 162 |
+
minimum=1,
|
| 163 |
+
value=8,
|
| 164 |
+
interactive=True)
|
| 165 |
+
|
| 166 |
+
rand_scale_col = gr.Column()
|
| 167 |
+
with rand_scale_col:
|
| 168 |
+
gr.Markdown("""### Random Scale Settings""")
|
| 169 |
+
with gr.Row():
|
| 170 |
+
scale_num = gr.Number(label="Max scale",
|
| 171 |
+
info="How much to scale in both directions (+ and -)",
|
| 172 |
+
minimum=0,
|
| 173 |
+
value=10,
|
| 174 |
+
interactive=True)
|
| 175 |
+
|
| 176 |
+
rand_rotate_col = gr.Column()
|
| 177 |
+
with rand_rotate_col:
|
| 178 |
+
gr.Markdown("""### Random Rotate Settings""")
|
| 179 |
+
with gr.Row():
|
| 180 |
+
rotate_num = gr.Number(label="Max angle",
|
| 181 |
+
info="How much to rotate in both directions (+ and -)",
|
| 182 |
+
minimum=0,
|
| 183 |
+
value=10,
|
| 184 |
+
interactive=True)
|
| 185 |
+
|
| 186 |
+
ad_jitter_col = gr.Column()
|
| 187 |
+
with ad_jitter_col:
|
| 188 |
+
gr.Markdown("""### Additional Jitter Settings""")
|
| 189 |
+
with gr.Row():
|
| 190 |
+
ad_jitter_num = gr.Number(label="Jitter",
|
| 191 |
+
info="How much to jitter image by",
|
| 192 |
+
minimum=1,
|
| 193 |
+
value=4,
|
| 194 |
+
interactive=True)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
|
| 199 |
confirm_btn = gr.Button("Generate", visible=False)
|
| 200 |
|
|
|
|
| 233 |
nodeY_num.blur(check_input, inputs=[nodeY_num, nodeY_max])
|
| 234 |
node_num.blur(check_input, inputs=[node_num, node_max])
|
| 235 |
|
| 236 |
+
images_gal.select(update_img_label,
|
| 237 |
+
inputs=thresholds,
|
| 238 |
+
outputs=images_gal)
|
| 239 |
+
|
| 240 |
+
preprocess_ck.select(lambda status: (gr.update(visible=status),
|
| 241 |
+
gr.update(visible=status),
|
| 242 |
+
gr.update(visible=status),
|
| 243 |
+
gr.update(visible=status),
|
| 244 |
+
gr.update(visible=status),
|
| 245 |
+
gr.update(visible=status)),
|
| 246 |
+
inputs=preprocess_ck,
|
| 247 |
+
outputs=[transforms_dd,
|
| 248 |
+
pad_col,
|
| 249 |
+
jitter_col,
|
| 250 |
+
rand_scale_col,
|
| 251 |
+
rand_rotate_col,
|
| 252 |
+
ad_jitter_col])
|
| 253 |
+
|
| 254 |
+
transforms_dd.change(on_transform,
|
| 255 |
+
inputs=transforms_dd,
|
| 256 |
+
outputs=[pad_col,
|
| 257 |
+
jitter_col,
|
| 258 |
+
rand_scale_col,
|
| 259 |
+
rand_rotate_col,
|
| 260 |
+
ad_jitter_col])
|
| 261 |
+
|
| 262 |
+
mode_rad.select(on_pad_mode,
|
| 263 |
+
outputs=constant_num)
|
| 264 |
+
|
| 265 |
confirm_btn.click(generate,
|
| 266 |
inputs=[lr_sl,
|
| 267 |
epoch_num,
|
|
|
|
| 275 |
thresholds,
|
| 276 |
chan_decor_ck,
|
| 277 |
spacial_decor_ck,
|
|
|
|
| 278 |
sd_num],
|
| 279 |
outputs=[images_gal, thresholds])
|
| 280 |
+
|
|
|
|
|
|
|
| 281 |
demo.queue().launch()
|
| 282 |
|
| 283 |
|
|
|
|
| 385 |
|
| 386 |
|
| 387 |
def generate(lr, epochs, img_size, channel, nodeX, nodeY, node, selected_layer,
|
| 388 |
+
model, thresholds, chan_decor, spacial_decor,
|
| 389 |
sd_num, progress=gr.Progress(track_tqdm=True)):
|
| 390 |
"""
|
| 391 |
Generates the feature visualizaiton with given parameters and tuning.
|
|
|
|
| 398 |
def param_f(): return param.image(img_size,
|
| 399 |
fft=spacial_decor,
|
| 400 |
decorrelate=chan_decor,
|
|
|
|
| 401 |
sd=sd_num) # Image setup
|
| 402 |
def optimizer(params): return torch.optim.Adam(params, lr=lr)
|
| 403 |
|
|
|
|
| 433 |
else: # Layer Specific
|
| 434 |
obj = lambda m: torch.mean(torch.pow(-m(selected_layer[0]).cuda(), torch.tensor(2).cuda())).cuda()
|
| 435 |
thresholds = h_manip.expo_tuple(epochs, 6)
|
| 436 |
+
print(thresholds)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
img = np.array(render.render_vis(model,
|
| 440 |
+
obj,
|
| 441 |
+
thresholds=thresholds,
|
| 442 |
+
show_image=False,
|
| 443 |
+
optimizer=optimizer,
|
| 444 |
+
param_f=param_f,
|
| 445 |
+
verbose=True)).squeeze(1)
|
| 446 |
|
| 447 |
return gr.Gallery.update(img), thresholds
|
| 448 |
|
|
|
|
| 450 |
def update_img_label(thresholds, evt: gr.SelectData):
|
| 451 |
return gr.Gallery.update(label='Epoch ' + str(thresholds[evt.index]), show_label=True)
|
| 452 |
|
| 453 |
+
|
| 454 |
def check_input(curr, maxx):
|
| 455 |
if curr > maxx:
|
| 456 |
raise gr.Error(f"""Value {curr} is higher then maximum of {maxx}""")
|
| 457 |
|
| 458 |
|
| 459 |
+
def on_transform(transforms):
|
| 460 |
+
transform_states = {
|
| 461 |
+
h_models.TransformTypes.PAD.value: False,
|
| 462 |
+
h_models.TransformTypes.JITTER.value: False,
|
| 463 |
+
h_models.TransformTypes.RANDOM_SCALE.value: False,
|
| 464 |
+
h_models.TransformTypes.RANDOM_ROTATE.value: False,
|
| 465 |
+
h_models.TransformTypes.AD_JITTER.value: False
|
| 466 |
+
}
|
| 467 |
+
for transform in transforms:
|
| 468 |
+
transform_states[transform] = True
|
| 469 |
+
|
| 470 |
+
return [gr.update(visible=state) for state in transform_states.values()]
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
def on_pad_mode (evt: gr.SelectData):
|
| 474 |
+
if (evt.value == "Constant"):
|
| 475 |
+
return gr.update(visible=True)
|
| 476 |
+
return gr.update(visible=False)
|
| 477 |
main()
|