Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
labels = ['Ditto','Golbat','Koffing'] | |
def predict_pokemon_type(uploaded_file): | |
if uploaded_file is None: | |
return "No file uploaded." | |
model = tf.keras.models.load_model('Ditto-premiumdelux-model_transferlearning.keras') | |
# Load the image from the file path | |
with Image.open(uploaded_file) as img: | |
img = img.resize((150, 150)).convert('RGB') # Convert image to RGB | |
img_array = np.array(img) | |
prediction = model.predict(np.expand_dims(img_array, axis=0)) | |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} | |
return confidences | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=predict_pokemon_type, # Function to process the input | |
inputs=gr.File(label="Upload File"), # File upload widget | |
outputs="text", # Output type | |
title="Pokemon Classifier", # Title of the interface | |
description="Upload a picture of a pokemon (preferably Ditto, Golbat, Koffing)" # Description of the interface | |
) | |
# Launch the interface | |
iface.launch() |