bauckluc's picture
Update app.py
222ed32 verified
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
model_path = "pokemon_transferlearning2.keras"
model = tf.keras.models.load_model(model_path)
# Define the core prediction function
def predict_pokemon(image):
# Preprocess image
print(type(image))
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
image = image.resize((150, 150)) #resize the image to 150x150
image = np.array(image)
image = np.expand_dims(image, axis=0) # same as image[None, ...]
# Predict
prediction = model.predict(image)
# Apply softmax to get probabilities for each class
prediction = tf.nn.softmax(prediction)
# Create a dictionary with the probabilities for each Pokemon
porygon = np.round(float(prediction[0][0]), 2)
seel = np.round(float(prediction[0][1]), 2)
vaperon = np.round(float(prediction[0][2]), 2)
return {'Porygon': porygon, 'Seel': seel, 'Vaperon': vaperon}
input_image = gr.Image()
iface = gr.Interface(
fn=predict_pokemon,
inputs=input_image,
outputs=gr.Label(),
examples=["images/vaporeon.png", "images/seel.jpg", "images/porygon.png"],
description="A simple mlp classification model for image classification using the mnist dataset.")
iface.launch(share=True)