Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from PIL import Image | |
| model_path = "pokemon_transferlearning2.keras" | |
| model = tf.keras.models.load_model(model_path) | |
| # Define the core prediction function | |
| def predict_pokemon(image): | |
| # Preprocess image | |
| print(type(image)) | |
| image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image | |
| image = image.resize((150, 150)) #resize the image to 150x150 | |
| image = np.array(image) | |
| image = np.expand_dims(image, axis=0) # same as image[None, ...] | |
| # Predict | |
| prediction = model.predict(image) | |
| # Apply softmax to get probabilities for each class | |
| prediction = tf.nn.softmax(prediction) | |
| # Create a dictionary with the probabilities for each Pokemon | |
| porygon = np.round(float(prediction[0][0]), 2) | |
| seel = np.round(float(prediction[0][1]), 2) | |
| vaperon = np.round(float(prediction[0][2]), 2) | |
| return {'Porygon': porygon, 'Seel': seel, 'Vaperon': vaperon} | |
| input_image = gr.Image() | |
| iface = gr.Interface( | |
| fn=predict_pokemon, | |
| inputs=input_image, | |
| outputs=gr.Label(), | |
| examples=["images/vaporeon.png", "images/seel.jpg", "images/porygon.png"], | |
| description="A simple mlp classification model for image classification using the mnist dataset.") | |
| iface.launch(share=True) |