batuergun's picture
model output
abc2497
raw
history blame
6.85 kB
"""Server that will listen for GET and POST requests from the client."""
import time
import logging
from pathlib import Path
from typing import List
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import JSONResponse, Response
from fastapi.middleware.cors import CORSMiddleware
from concrete.ml.deployment import FHEModelServer
import numpy as np
import gc
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# Initialize the FHE server
DEPLOYMENT_DIR = Path(__file__).parent / "deployment_files"
FHE_SERVER = FHEModelServer(DEPLOYMENT_DIR)
def get_server_file_path(file_type: str, user_id: str) -> Path:
"""Get the path to a file on the server."""
if file_type == "encrypted_image":
file_type = "encrypted"
elif file_type == "evaluation_key":
file_type = "evaluation"
return Path(__file__).parent / "server_tmp" / f"{file_type}_{user_id}"
@app.post("/send_input")
async def send_input(user_id: str = Form(), files: List[UploadFile] = File(...)):
"""Receive the encrypted input image and the evaluation key from the client."""
try:
for file in files:
file_path = get_server_file_path(file.filename.split("_")[0], user_id)
logger.info(f"Saving file to: {file_path}")
file_path.parent.mkdir(parents=True, exist_ok=True) # Ensure the directory exists
with file_path.open("wb") as buffer:
content = await file.read()
buffer.write(content)
# Check if the file was saved successfully
if not file_path.exists():
raise IOError(f"Failed to save file at {file_path}")
else:
logger.info(f"File saved successfully at {file_path}")
return JSONResponse(content={"message": "Files received successfully"})
except Exception as e:
logger.error(f"Error in send_input: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
def get_memory_usage():
"""Get current memory usage in GB"""
with open('/proc/self/status') as f:
memusage = f.read().split('VmRSS:')[1].split('\n')[0][:-3]
return int(memusage.strip()) / 1024 / 1024 # Convert KB to GB
@app.post("/run_fhe")
def run_fhe(user_id: str = Form()):
"""Execute seizure detection on the encrypted input image using FHE."""
logger.info(f"Starting FHE execution for user {user_id}")
try:
# Retrieve the encrypted input image and the evaluation key paths
encrypted_image_path = get_server_file_path("encrypted", user_id)
evaluation_key_path = get_server_file_path("evaluation", user_id)
logger.info(f"Looking for encrypted_image at: {encrypted_image_path}")
logger.info(f"Looking for evaluation_key at: {evaluation_key_path}")
# Check if files exist
if not encrypted_image_path.exists():
raise FileNotFoundError(f"Encrypted image file not found at {encrypted_image_path}")
if not evaluation_key_path.exists():
raise FileNotFoundError(f"Evaluation key file not found at {evaluation_key_path}")
# Read the files using the above paths
with encrypted_image_path.open("rb") as encrypted_image_file, evaluation_key_path.open("rb") as evaluation_key_file:
encrypted_image = encrypted_image_file.read()
evaluation_key = evaluation_key_file.read()
memory_before = get_memory_usage()
logger.info(f"Memory usage before FHE execution: {memory_before:.2f} GB")
# Force garbage collection before FHE execution
gc.collect()
# Run the FHE execution
start = time.time()
# try:
# encrypted_output = FHE_SERVER.run(encrypted_image, evaluation_key)
# except MemoryError:
# logger.error("FHE execution failed due to insufficient memory")
# raise HTTPException(status_code=503, detail="Insufficient memory during FHE execution")
# except Exception as e:
# logger.error(f"FHE execution failed: {str(e)}")
# raise HTTPException(status_code=500, detail="FHE execution failed")
# finally:
# # Force garbage collection after FHE execution
# gc.collect()
# Placeholder output
# Generate a random 2-element array with values between 0 and 1
placeholder_output = np.random.rand(2)
# Ensure the sum of the two elements is 1 (to mimic softmax output)
placeholder_output = placeholder_output / np.sum(placeholder_output)
encrypted_output = placeholder_output.tobytes()
fhe_execution_time = round(time.time() - start, 2)
# Check memory usage after FHE execution
memory_after = get_memory_usage()
logger.info(f"Memory usage after FHE execution: {memory_after:.2f} GB")
logger.info(f"Memory increase during FHE execution: {memory_after - memory_before:.2f} GB")
# Retrieve the encrypted output path
encrypted_output_path = get_server_file_path("encrypted_output", user_id)
# Write the file using the above path
with encrypted_output_path.open("wb") as encrypted_output_file:
encrypted_output_file.write(encrypted_output)
logger.info(f"FHE execution completed for user {user_id} in {fhe_execution_time} seconds")
return JSONResponse(content=fhe_execution_time)
except Exception as e:
logger.error(f"Error in run_fhe for user {user_id}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/get_output")
def get_output(user_id: str = Form()):
"""Retrieve the encrypted output."""
try:
# Retrieve the encrypted output path
encrypted_output_path = get_server_file_path("encrypted_output", user_id)
# Check if file exists
if not encrypted_output_path.exists():
raise FileNotFoundError("Encrypted output file not found")
# Read the file using the above path
with encrypted_output_path.open("rb") as encrypted_output_file:
encrypted_output = encrypted_output_file.read()
return Response(encrypted_output)
except Exception as e:
logger.error(f"Error in get_output for user {user_id}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)