Spaces:
Runtime error
Runtime error
udpate to sdxl
Browse files- app.py +58 -69
- app_sd.py +557 -0
- models/attention.py +210 -723
- models/attention_processor.py +1687 -0
- models/dual_transformer_2d.py +151 -0
- models/region_diffusion.py +78 -18
- models/region_diffusion_xl.py +1138 -0
- models/resnet.py +882 -0
- models/transformer_2d.py +341 -0
- models/unet_2d_blocks.py +0 -0
- models/unet_2d_condition.py +707 -135
- requirements.txt +1 -1
- utils/attention_utils.py +441 -36
app.py
CHANGED
@@ -8,7 +8,7 @@ import torch
|
|
8 |
import numpy as np
|
9 |
from torchvision import transforms
|
10 |
|
11 |
-
from models.
|
12 |
from utils.attention_utils import get_token_maps
|
13 |
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\
|
14 |
get_attention_control_input, get_gradient_guidance_input
|
@@ -61,7 +61,7 @@ def load_url_params(url_params):
|
|
61 |
|
62 |
def main():
|
63 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
64 |
-
model =
|
65 |
|
66 |
def generate(
|
67 |
text_input: str,
|
@@ -81,8 +81,8 @@ def main():
|
|
81 |
run_dir = 'results/'
|
82 |
os.makedirs(run_dir, exist_ok=True)
|
83 |
# Load region diffusion model.
|
84 |
-
height = int(height) if height else
|
85 |
-
width = int(width) if width else
|
86 |
steps = 41 if not steps else steps
|
87 |
guidance_weight = 8.5 if not guidance_weight else guidance_weight
|
88 |
text_input = rich_text_input if rich_text_input != '' and rich_text_input != None else text_input
|
@@ -117,19 +117,19 @@ def main():
|
|
117 |
else:
|
118 |
model.reset_attention_maps()
|
119 |
model.remove_tokenmap_hooks()
|
120 |
-
plain_img = model.
|
121 |
-
|
122 |
-
|
123 |
print('time lapses to get attention maps: %.4f' %
|
124 |
(time.time()-begin_time))
|
125 |
seed_everything(seed)
|
126 |
color_obj_masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
127 |
-
|
128 |
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
129 |
return_vis=True)
|
130 |
seed_everything(seed)
|
131 |
model.masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
132 |
-
|
133 |
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
134 |
return_vis=True)
|
135 |
color_obj_atten_all = torch.zeros_like(color_obj_masks[-1])
|
@@ -146,14 +146,14 @@ def main():
|
|
146 |
# generate image from rich text
|
147 |
begin_time = time.time()
|
148 |
seed_everything(seed)
|
149 |
-
rich_img = model.
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
print('time lapses to generate image from rich text: %.4f' %
|
155 |
(time.time()-begin_time))
|
156 |
-
return [plain_img[0], rich_img[0], segments_vis, token_maps]
|
157 |
|
158 |
with gr.Blocks(css=css) as demo:
|
159 |
url_params = gr.JSON({}, visible=False, label="URL Params")
|
@@ -226,12 +226,12 @@ def main():
|
|
226 |
maximum=50,
|
227 |
step=0.1,
|
228 |
value=8.5)
|
229 |
-
width = gr.Dropdown(choices=[
|
230 |
-
value=
|
231 |
label='Width',
|
232 |
visible=True)
|
233 |
-
height = gr.Dropdown(choices=[
|
234 |
-
value=
|
235 |
label='height',
|
236 |
visible=True)
|
237 |
|
@@ -243,7 +243,7 @@ def main():
|
|
243 |
with gr.Column():
|
244 |
richtext_result = gr.Image(
|
245 |
label='Rich-text', elem_id="rich-text-image")
|
246 |
-
richtext_result.style(height=
|
247 |
with gr.Row():
|
248 |
plaintext_result = gr.Image(
|
249 |
label='Plain-text', elem_id="plain-text-image")
|
@@ -265,22 +265,22 @@ def main():
|
|
265 |
[
|
266 |
'{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}',
|
267 |
'',
|
268 |
-
|
|
|
269 |
0.3,
|
270 |
-
0,
|
271 |
0.5,
|
272 |
-
|
273 |
0,
|
274 |
None,
|
275 |
],
|
276 |
[
|
277 |
-
'{"ops":[{"insert":"A "},{"attributes":{"link":"
|
278 |
'',
|
279 |
-
|
280 |
-
0.
|
281 |
-
0,
|
282 |
0.5,
|
283 |
-
|
284 |
0,
|
285 |
None,
|
286 |
],
|
@@ -325,7 +325,7 @@ def main():
|
|
325 |
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#04a704"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
326 |
'lowres, had anatomy, bad hands, cropped, worst quality',
|
327 |
11,
|
328 |
-
0.
|
329 |
0.3,
|
330 |
0.3,
|
331 |
6,
|
@@ -333,10 +333,10 @@ def main():
|
|
333 |
None,
|
334 |
],
|
335 |
[
|
336 |
-
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#
|
337 |
'lowres, had anatomy, bad hands, cropped, worst quality',
|
338 |
11,
|
339 |
-
0.
|
340 |
0.3,
|
341 |
0.3,
|
342 |
6,
|
@@ -344,36 +344,25 @@ def main():
|
|
344 |
None,
|
345 |
],
|
346 |
[
|
347 |
-
'{"ops":[{"insert":"a
|
348 |
-
'',
|
349 |
-
|
350 |
-
0.4,
|
351 |
0.5,
|
352 |
0.3,
|
|
|
353 |
6,
|
354 |
0.5,
|
355 |
None,
|
356 |
],
|
357 |
[
|
358 |
-
'{"ops":[{"insert":"
|
359 |
-
'',
|
360 |
-
3,
|
361 |
-
0.3,
|
362 |
-
0,
|
363 |
-
0,
|
364 |
-
9,
|
365 |
-
1,
|
366 |
-
None,
|
367 |
-
],
|
368 |
-
[
|
369 |
-
'{"ops":[{"insert":"A "},{"attributes":{"color":"#FFD700"},"insert":"marble statue of a wolf\'s head and shoulder"},{"insert":", surrounded by colorful flowers michelangelo, detailed, intricate, full of color, led lighting, trending on artstation, 4 k, hyperrealistic, 3 5 mm, focused, extreme details, unreal engine 5, masterpiece "}]}',
|
370 |
'',
|
371 |
-
|
372 |
-
0.
|
373 |
-
0.
|
374 |
0.3,
|
375 |
-
|
376 |
-
0.
|
377 |
None,
|
378 |
],
|
379 |
]
|
@@ -403,21 +392,21 @@ def main():
|
|
403 |
with gr.Row():
|
404 |
style_examples = [
|
405 |
[
|
406 |
-
'{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"
|
407 |
'',
|
408 |
10,
|
409 |
-
0.
|
410 |
0,
|
411 |
-
0.
|
412 |
-
|
413 |
0,
|
414 |
None,
|
415 |
],
|
416 |
[
|
417 |
'{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}',
|
418 |
'worst quality, dark, poor quality',
|
419 |
-
|
420 |
-
0.
|
421 |
0,
|
422 |
0,
|
423 |
9,
|
@@ -425,10 +414,10 @@ def main():
|
|
425 |
None,
|
426 |
],
|
427 |
[
|
428 |
-
'{"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"
|
429 |
'',
|
430 |
2,
|
431 |
-
0.
|
432 |
0,
|
433 |
0,
|
434 |
6,
|
@@ -462,35 +451,35 @@ def main():
|
|
462 |
with gr.Row():
|
463 |
size_examples = [
|
464 |
[
|
465 |
-
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "60px"}, "insert": "pineapple"}, {"insert": "
|
466 |
-
'
|
467 |
5,
|
468 |
0.3,
|
469 |
0,
|
470 |
0,
|
471 |
-
|
472 |
1,
|
473 |
None,
|
474 |
],
|
475 |
[
|
476 |
-
'{"ops": [{"insert": "A pizza with pineapple, "}, {"attributes": {"size": "
|
477 |
-
'
|
478 |
5,
|
479 |
0.3,
|
480 |
0,
|
481 |
0,
|
482 |
-
|
483 |
1,
|
484 |
None,
|
485 |
],
|
486 |
[
|
487 |
-
'{"ops": [{"insert": "A pizza with pineapple, pepperoni, and "}, {"attributes": {"size": "
|
488 |
-
'
|
489 |
5,
|
490 |
0.3,
|
491 |
0,
|
492 |
0,
|
493 |
-
|
494 |
1,
|
495 |
None,
|
496 |
],
|
|
|
8 |
import numpy as np
|
9 |
from torchvision import transforms
|
10 |
|
11 |
+
from models.region_diffusion_xl import RegionDiffusionXL
|
12 |
from utils.attention_utils import get_token_maps
|
13 |
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\
|
14 |
get_attention_control_input, get_gradient_guidance_input
|
|
|
61 |
|
62 |
def main():
|
63 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
64 |
+
model = RegionDiffusionXL()
|
65 |
|
66 |
def generate(
|
67 |
text_input: str,
|
|
|
81 |
run_dir = 'results/'
|
82 |
os.makedirs(run_dir, exist_ok=True)
|
83 |
# Load region diffusion model.
|
84 |
+
height = int(height) if height else 1024
|
85 |
+
width = int(width) if width else 1024
|
86 |
steps = 41 if not steps else steps
|
87 |
guidance_weight = 8.5 if not guidance_weight else guidance_weight
|
88 |
text_input = rich_text_input if rich_text_input != '' and rich_text_input != None else text_input
|
|
|
117 |
else:
|
118 |
model.reset_attention_maps()
|
119 |
model.remove_tokenmap_hooks()
|
120 |
+
plain_img = model.sample([base_text_prompt], negative_prompt=[negative_text],
|
121 |
+
height=height, width=width, num_inference_steps=steps,
|
122 |
+
guidance_scale=guidance_weight, run_rich_text=False)
|
123 |
print('time lapses to get attention maps: %.4f' %
|
124 |
(time.time()-begin_time))
|
125 |
seed_everything(seed)
|
126 |
color_obj_masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
127 |
+
1024//8, 1024//8, color_target_token_ids[:-1], seed,
|
128 |
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
129 |
return_vis=True)
|
130 |
seed_everything(seed)
|
131 |
model.masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
132 |
+
1024//8, 1024//8, region_target_token_ids[:-1], seed,
|
133 |
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
134 |
return_vis=True)
|
135 |
color_obj_atten_all = torch.zeros_like(color_obj_masks[-1])
|
|
|
146 |
# generate image from rich text
|
147 |
begin_time = time.time()
|
148 |
seed_everything(seed)
|
149 |
+
rich_img = model.sample(region_text_prompts, negative_prompt=[negative_text],
|
150 |
+
height=height, width=width, num_inference_steps=steps,
|
151 |
+
guidance_scale=guidance_weight, use_guidance=use_grad_guidance,
|
152 |
+
text_format_dict=text_format_dict, inject_selfattn=inject_interval,
|
153 |
+
inject_background=inject_background, run_rich_text=True)
|
154 |
print('time lapses to generate image from rich text: %.4f' %
|
155 |
(time.time()-begin_time))
|
156 |
+
return [plain_img.images[0], rich_img.images[0], segments_vis, token_maps]
|
157 |
|
158 |
with gr.Blocks(css=css) as demo:
|
159 |
url_params = gr.JSON({}, visible=False, label="URL Params")
|
|
|
226 |
maximum=50,
|
227 |
step=0.1,
|
228 |
value=8.5)
|
229 |
+
width = gr.Dropdown(choices=[1024],
|
230 |
+
value=1024,
|
231 |
label='Width',
|
232 |
visible=True)
|
233 |
+
height = gr.Dropdown(choices=[1024],
|
234 |
+
value=1024,
|
235 |
label='height',
|
236 |
visible=True)
|
237 |
|
|
|
243 |
with gr.Column():
|
244 |
richtext_result = gr.Image(
|
245 |
label='Rich-text', elem_id="rich-text-image")
|
246 |
+
richtext_result.style(height=1024)
|
247 |
with gr.Row():
|
248 |
plaintext_result = gr.Image(
|
249 |
label='Plain-text', elem_id="plain-text-image")
|
|
|
265 |
[
|
266 |
'{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}',
|
267 |
'',
|
268 |
+
9,
|
269 |
+
0.3,
|
270 |
0.3,
|
|
|
271 |
0.5,
|
272 |
+
3,
|
273 |
0,
|
274 |
None,
|
275 |
],
|
276 |
[
|
277 |
+
'{"ops":[{"insert":"A cozy "},{"attributes":{"link":"A charming wooden cabin with Christmas decoration, warm light coming out from the windows."},"insert":"cabin"},{"insert":" nestled in a "},{"attributes":{"link":"Towering evergreen trees covered in a thick layer of pristine snow."},"insert":"snowy forest"},{"insert":", and a "},{"attributes":{"link":"A cute snowman wearing a carrot nose, coal eyes, and a colorful scarf, welcoming visitors with a cheerful vibe."},"insert":"snowman"},{"insert":" stands in the yard.\n"}]}',
|
278 |
'',
|
279 |
+
12,
|
280 |
+
0.4,
|
281 |
+
0.3,
|
282 |
0.5,
|
283 |
+
4,
|
284 |
0,
|
285 |
None,
|
286 |
],
|
|
|
325 |
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#04a704"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
326 |
'lowres, had anatomy, bad hands, cropped, worst quality',
|
327 |
11,
|
328 |
+
0.5,
|
329 |
0.3,
|
330 |
0.3,
|
331 |
6,
|
|
|
333 |
None,
|
334 |
],
|
335 |
[
|
336 |
+
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#ff5df1"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
337 |
'lowres, had anatomy, bad hands, cropped, worst quality',
|
338 |
11,
|
339 |
+
0.5,
|
340 |
0.3,
|
341 |
0.3,
|
342 |
6,
|
|
|
344 |
None,
|
345 |
],
|
346 |
[
|
347 |
+
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#999999"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
348 |
+
'lowres, had anatomy, bad hands, cropped, worst quality',
|
349 |
+
11,
|
|
|
350 |
0.5,
|
351 |
0.3,
|
352 |
+
0.3,
|
353 |
6,
|
354 |
0.5,
|
355 |
None,
|
356 |
],
|
357 |
[
|
358 |
+
'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#FD6C9E"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
'',
|
360 |
+
10,
|
361 |
+
0.5,
|
362 |
+
0.5,
|
363 |
0.3,
|
364 |
+
7,
|
365 |
+
0.5,
|
366 |
None,
|
367 |
],
|
368 |
]
|
|
|
392 |
with gr.Row():
|
393 |
style_examples = [
|
394 |
[
|
395 |
+
'{"ops":[{"insert":"a beautiful"},{"attributes":{"font":"mirza"},"insert":" garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain"},{"insert":" in the background"}]}',
|
396 |
'',
|
397 |
10,
|
398 |
+
0.6,
|
399 |
0,
|
400 |
+
0.4,
|
401 |
+
5,
|
402 |
0,
|
403 |
None,
|
404 |
],
|
405 |
[
|
406 |
'{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}',
|
407 |
'worst quality, dark, poor quality',
|
408 |
+
2,
|
409 |
+
0.45,
|
410 |
0,
|
411 |
0,
|
412 |
9,
|
|
|
414 |
None,
|
415 |
],
|
416 |
[
|
417 |
+
'{"ops":[{"insert":"a night"},{"attributes":{"font":"slabo"},"insert":" sky"},{"insert":" filled with stars above a turbulent"},{"attributes":{"font":"roboto"},"insert":" sea"},{"insert":" with giant waves"}]}',
|
418 |
'',
|
419 |
2,
|
420 |
+
0.6,
|
421 |
0,
|
422 |
0,
|
423 |
6,
|
|
|
451 |
with gr.Row():
|
452 |
size_examples = [
|
453 |
[
|
454 |
+
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "60px"}, "insert": "pineapple"}, {"insert": " pepperoni, and mushroom on the top"}]}',
|
455 |
+
'',
|
456 |
5,
|
457 |
0.3,
|
458 |
0,
|
459 |
0,
|
460 |
+
3,
|
461 |
1,
|
462 |
None,
|
463 |
],
|
464 |
[
|
465 |
+
'{"ops": [{"insert": "A pizza with pineapple, "}, {"attributes": {"size": "60px"}, "insert": "pepperoni"}, {"insert": ", and mushroom on the top"}]}',
|
466 |
+
'',
|
467 |
5,
|
468 |
0.3,
|
469 |
0,
|
470 |
0,
|
471 |
+
3,
|
472 |
1,
|
473 |
None,
|
474 |
],
|
475 |
[
|
476 |
+
'{"ops": [{"insert": "A pizza with pineapple, pepperoni, and "}, {"attributes": {"size": "60px"}, "insert": "mushroom"}, {"insert": " on the top"}]}',
|
477 |
+
'',
|
478 |
5,
|
479 |
0.3,
|
480 |
0,
|
481 |
0,
|
482 |
+
3,
|
483 |
1,
|
484 |
None,
|
485 |
],
|
app_sd.py
ADDED
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
import argparse
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from torchvision import transforms
|
10 |
+
|
11 |
+
from models.region_diffusion import RegionDiffusion
|
12 |
+
from utils.attention_utils import get_token_maps
|
13 |
+
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\
|
14 |
+
get_attention_control_input, get_gradient_guidance_input
|
15 |
+
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
from PIL import Image, ImageOps
|
19 |
+
from share_btn import community_icon_html, loading_icon_html, share_js, css
|
20 |
+
|
21 |
+
|
22 |
+
help_text = """
|
23 |
+
If you are encountering an error or not achieving your desired outcome, here are some potential reasons and recommendations to consider:
|
24 |
+
1. If you format only a portion of a word rather than the complete word, an error may occur.
|
25 |
+
2. If you use font color and get completely corrupted results, you may consider decrease the color weight lambda.
|
26 |
+
3. Consider using a different seed.
|
27 |
+
"""
|
28 |
+
|
29 |
+
|
30 |
+
canvas_html = """<iframe id='rich-text-root' style='width:100%' height='360px' src='file=rich-text-to-json-iframe.html' frameborder='0' scrolling='no'></iframe>"""
|
31 |
+
get_js_data = """
|
32 |
+
async (text_input, negative_prompt, height, width, seed, steps, num_segments, segment_threshold, inject_interval, guidance_weight, color_guidance_weight, rich_text_input, background_aug) => {
|
33 |
+
const richEl = document.getElementById("rich-text-root");
|
34 |
+
const data = richEl? richEl.contentDocument.body._data : {};
|
35 |
+
return [text_input, negative_prompt, height, width, seed, steps, num_segments, segment_threshold, inject_interval, guidance_weight, color_guidance_weight, JSON.stringify(data), background_aug];
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
set_js_data = """
|
39 |
+
async (text_input) => {
|
40 |
+
const richEl = document.getElementById("rich-text-root");
|
41 |
+
const data = text_input ? JSON.parse(text_input) : null;
|
42 |
+
if (richEl && data) richEl.contentDocument.body.setQuillContents(data);
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
|
46 |
+
get_window_url_params = """
|
47 |
+
async (url_params) => {
|
48 |
+
const params = new URLSearchParams(window.location.search);
|
49 |
+
url_params = Object.fromEntries(params);
|
50 |
+
return [url_params];
|
51 |
+
}
|
52 |
+
"""
|
53 |
+
|
54 |
+
|
55 |
+
def load_url_params(url_params):
|
56 |
+
if 'prompt' in url_params:
|
57 |
+
return gr.update(visible=True), url_params
|
58 |
+
else:
|
59 |
+
return gr.update(visible=False), url_params
|
60 |
+
|
61 |
+
|
62 |
+
def main():
|
63 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
64 |
+
model = RegionDiffusion(device)
|
65 |
+
|
66 |
+
def generate(
|
67 |
+
text_input: str,
|
68 |
+
negative_text: str,
|
69 |
+
height: int,
|
70 |
+
width: int,
|
71 |
+
seed: int,
|
72 |
+
steps: int,
|
73 |
+
num_segments: int,
|
74 |
+
segment_threshold: float,
|
75 |
+
inject_interval: float,
|
76 |
+
guidance_weight: float,
|
77 |
+
color_guidance_weight: float,
|
78 |
+
rich_text_input: str,
|
79 |
+
background_aug: bool,
|
80 |
+
):
|
81 |
+
run_dir = 'results/'
|
82 |
+
os.makedirs(run_dir, exist_ok=True)
|
83 |
+
# Load region diffusion model.
|
84 |
+
height = int(height)
|
85 |
+
width = int(width)
|
86 |
+
steps = 41 if not steps else steps
|
87 |
+
guidance_weight = 8.5 if not guidance_weight else guidance_weight
|
88 |
+
text_input = rich_text_input if rich_text_input != '' else text_input
|
89 |
+
print('text_input', text_input)
|
90 |
+
if (text_input == '' or rich_text_input == ''):
|
91 |
+
raise gr.Error("Please enter some text.")
|
92 |
+
# parse json to span attributes
|
93 |
+
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
|
94 |
+
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
|
95 |
+
json.loads(text_input))
|
96 |
+
|
97 |
+
# create control input for region diffusion
|
98 |
+
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
|
99 |
+
model, base_text_prompt, style_text_prompts, footnote_text_prompts,
|
100 |
+
footnote_target_tokens, color_text_prompts, color_names)
|
101 |
+
|
102 |
+
# create control input for cross attention
|
103 |
+
text_format_dict = get_attention_control_input(
|
104 |
+
model, base_tokens, size_text_prompts_and_sizes)
|
105 |
+
|
106 |
+
# create control input for region guidance
|
107 |
+
text_format_dict, color_target_token_ids = get_gradient_guidance_input(
|
108 |
+
model, base_tokens, color_text_prompts, color_rgbs, text_format_dict, color_guidance_weight=color_guidance_weight)
|
109 |
+
|
110 |
+
seed_everything(seed)
|
111 |
+
|
112 |
+
# get token maps from plain text to image generation.
|
113 |
+
begin_time = time.time()
|
114 |
+
if model.selfattn_maps is None and model.crossattn_maps is None:
|
115 |
+
model.remove_tokenmap_hooks()
|
116 |
+
model.register_tokenmap_hooks()
|
117 |
+
else:
|
118 |
+
model.reset_attention_maps()
|
119 |
+
model.remove_tokenmap_hooks()
|
120 |
+
plain_img = model.produce_attn_maps([base_text_prompt], [negative_text],
|
121 |
+
height=height, width=width, num_inference_steps=steps,
|
122 |
+
guidance_scale=guidance_weight)
|
123 |
+
print('time lapses to get attention maps: %.4f' %
|
124 |
+
(time.time()-begin_time))
|
125 |
+
seed_everything(seed)
|
126 |
+
color_obj_masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
127 |
+
512//8, 512//8, color_target_token_ids[:-1], seed,
|
128 |
+
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
129 |
+
return_vis=True)
|
130 |
+
seed_everything(seed)
|
131 |
+
model.masks, segments_vis, token_maps = get_token_maps(model.selfattn_maps, model.crossattn_maps, model.n_maps, run_dir,
|
132 |
+
512//8, 512//8, region_target_token_ids[:-1], seed,
|
133 |
+
base_tokens, segment_threshold=segment_threshold, num_segments=num_segments,
|
134 |
+
return_vis=True)
|
135 |
+
color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width),
|
136 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
137 |
+
antialias=True)
|
138 |
+
for color_obj_mask in color_obj_masks]
|
139 |
+
text_format_dict['color_obj_atten'] = color_obj_masks
|
140 |
+
model.remove_tokenmap_hooks()
|
141 |
+
|
142 |
+
# generate image from rich text
|
143 |
+
begin_time = time.time()
|
144 |
+
seed_everything(seed)
|
145 |
+
if background_aug:
|
146 |
+
bg_aug_end = 500
|
147 |
+
else:
|
148 |
+
bg_aug_end = 1000
|
149 |
+
rich_img = model.prompt_to_img(region_text_prompts, [negative_text],
|
150 |
+
height=height, width=width, num_inference_steps=steps,
|
151 |
+
guidance_scale=guidance_weight, use_guidance=use_grad_guidance,
|
152 |
+
text_format_dict=text_format_dict, inject_selfattn=inject_interval,
|
153 |
+
bg_aug_end=bg_aug_end)
|
154 |
+
print('time lapses to generate image from rich text: %.4f' %
|
155 |
+
(time.time()-begin_time))
|
156 |
+
return [plain_img[0], rich_img[0], segments_vis, token_maps]
|
157 |
+
|
158 |
+
with gr.Blocks(css=css) as demo:
|
159 |
+
url_params = gr.JSON({}, visible=False, label="URL Params")
|
160 |
+
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">Expressive Text-to-Image Generation with Rich Text</h1>
|
161 |
+
<p> <a href="https://songweige.github.io/">Songwei Ge</a>, <a href="https://taesung.me/">Taesung Park</a>, <a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a>, <a href="https://jbhuang0604.github.io/">Jia-Bin Huang</a> <p/>
|
162 |
+
<p> UMD, Adobe, CMU <p/>
|
163 |
+
<p> <a href="https://huggingface.co/spaces/songweig/rich-text-to-image?duplicate=true"><img src="https://bit.ly/3gLdBN6" style="display:inline;"alt="Duplicate Space"></a> | <a href="https://rich-text-to-image.github.io">[Website]</a> | <a href="https://github.com/SongweiGe/rich-text-to-image">[Code]</a> | <a href="https://arxiv.org/abs/2304.06720">[Paper]</a><p/>
|
164 |
+
<p> For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.""")
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column():
|
167 |
+
rich_text_el = gr.HTML(canvas_html, elem_id="canvas_html")
|
168 |
+
rich_text_input = gr.Textbox(value="", visible=False)
|
169 |
+
text_input = gr.Textbox(
|
170 |
+
label='Rich-text JSON Input',
|
171 |
+
visible=False,
|
172 |
+
max_lines=1,
|
173 |
+
placeholder='Example: \'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}\'',
|
174 |
+
elem_id="text_input"
|
175 |
+
)
|
176 |
+
negative_prompt = gr.Textbox(
|
177 |
+
label='Negative Prompt',
|
178 |
+
max_lines=1,
|
179 |
+
placeholder='Example: poor quality, blurry, dark, low resolution, low quality, worst quality',
|
180 |
+
elem_id="negative_prompt"
|
181 |
+
)
|
182 |
+
segment_threshold = gr.Slider(label='Token map threshold',
|
183 |
+
info='(See less area in token maps? Decrease this. See too much area? Increase this.)',
|
184 |
+
minimum=0,
|
185 |
+
maximum=1,
|
186 |
+
step=0.01,
|
187 |
+
value=0.25)
|
188 |
+
inject_interval = gr.Slider(label='Detail preservation',
|
189 |
+
info='(To preserve more structure from plain-text generation, increase this. To see more rich-text attributes, decrease this.)',
|
190 |
+
minimum=0,
|
191 |
+
maximum=1,
|
192 |
+
step=0.01,
|
193 |
+
value=0.)
|
194 |
+
color_guidance_weight = gr.Slider(label='Color weight',
|
195 |
+
info='(To obtain more precise color, increase this, while too large value may cause artifacts.)',
|
196 |
+
minimum=0,
|
197 |
+
maximum=2,
|
198 |
+
step=0.1,
|
199 |
+
value=0.5)
|
200 |
+
num_segments = gr.Slider(label='Number of segments',
|
201 |
+
minimum=2,
|
202 |
+
maximum=20,
|
203 |
+
step=1,
|
204 |
+
value=9)
|
205 |
+
seed = gr.Slider(label='Seed',
|
206 |
+
minimum=0,
|
207 |
+
maximum=100000,
|
208 |
+
step=1,
|
209 |
+
value=6,
|
210 |
+
elem_id="seed"
|
211 |
+
)
|
212 |
+
background_aug = gr.Checkbox(
|
213 |
+
label='Precise region alignment',
|
214 |
+
info='(For strict region alignment, select this option, but beware of potential artifacts when using with style.)',
|
215 |
+
value=True)
|
216 |
+
with gr.Accordion('Other Parameters', open=False):
|
217 |
+
steps = gr.Slider(label='Number of Steps',
|
218 |
+
minimum=0,
|
219 |
+
maximum=500,
|
220 |
+
step=1,
|
221 |
+
value=41)
|
222 |
+
guidance_weight = gr.Slider(label='CFG weight',
|
223 |
+
minimum=0,
|
224 |
+
maximum=50,
|
225 |
+
step=0.1,
|
226 |
+
value=8.5)
|
227 |
+
width = gr.Dropdown(choices=[512],
|
228 |
+
value=512,
|
229 |
+
label='Width',
|
230 |
+
visible=True)
|
231 |
+
height = gr.Dropdown(choices=[512],
|
232 |
+
value=512,
|
233 |
+
label='height',
|
234 |
+
visible=True)
|
235 |
+
|
236 |
+
with gr.Row():
|
237 |
+
with gr.Column(scale=1, min_width=100):
|
238 |
+
generate_button = gr.Button("Generate")
|
239 |
+
load_params_button = gr.Button(
|
240 |
+
"Load from URL Params", visible=True)
|
241 |
+
with gr.Column():
|
242 |
+
richtext_result = gr.Image(
|
243 |
+
label='Rich-text', elem_id="rich-text-image")
|
244 |
+
richtext_result.style(height=512)
|
245 |
+
with gr.Row():
|
246 |
+
plaintext_result = gr.Image(
|
247 |
+
label='Plain-text', elem_id="plain-text-image")
|
248 |
+
segments = gr.Image(label='Segmentation')
|
249 |
+
with gr.Row():
|
250 |
+
token_map = gr.Image(label='Token Maps')
|
251 |
+
with gr.Row(visible=False) as share_row:
|
252 |
+
with gr.Group(elem_id="share-btn-container"):
|
253 |
+
community_icon = gr.HTML(community_icon_html)
|
254 |
+
loading_icon = gr.HTML(loading_icon_html)
|
255 |
+
share_button = gr.Button(
|
256 |
+
"Share to community", elem_id="share-btn")
|
257 |
+
share_button.click(None, [], [], _js=share_js)
|
258 |
+
with gr.Row():
|
259 |
+
gr.Markdown(help_text)
|
260 |
+
|
261 |
+
with gr.Row():
|
262 |
+
footnote_examples = [
|
263 |
+
[
|
264 |
+
'{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}',
|
265 |
+
'',
|
266 |
+
5,
|
267 |
+
0.3,
|
268 |
+
0,
|
269 |
+
6,
|
270 |
+
1,
|
271 |
+
None,
|
272 |
+
True
|
273 |
+
],
|
274 |
+
[
|
275 |
+
'{"ops":[{"insert":"A "},{"attributes":{"link":"kitchen island with a stove with gas burners and a built-in oven "},"insert":"kitchen island"},{"insert":" next to a "},{"attributes":{"link":"an open refrigerator stocked with fresh produce, dairy products, and beverages. "},"insert":"refrigerator"},{"insert":", by James McDonald and Joarc Architects, home, interior, octane render, deviantart, cinematic, key art, hyperrealism, sun light, sunrays, canon eos c 300, Ζ 1.8, 35 mm, 8k, medium - format print"}]}',
|
276 |
+
'',
|
277 |
+
6,
|
278 |
+
0.5,
|
279 |
+
0,
|
280 |
+
6,
|
281 |
+
1,
|
282 |
+
None,
|
283 |
+
True
|
284 |
+
],
|
285 |
+
[
|
286 |
+
'{"ops":[{"insert":"A "},{"attributes":{"link":"Happy Kung fu panda art, elder, asian art, volumetric lighting, dramatic scene, ultra detailed, realism, chinese"},"insert":"panda"},{"insert":" standing on a cliff by a waterfall, wildlife photography, photograph, high quality, wildlife, f 1.8, soft focus, 8k, national geographic, award - winning photograph by nick nichols"}]}',
|
287 |
+
'',
|
288 |
+
4,
|
289 |
+
0.3,
|
290 |
+
0,
|
291 |
+
4,
|
292 |
+
1,
|
293 |
+
None,
|
294 |
+
True
|
295 |
+
],
|
296 |
+
]
|
297 |
+
|
298 |
+
gr.Examples(examples=footnote_examples,
|
299 |
+
label='Footnote examples',
|
300 |
+
inputs=[
|
301 |
+
text_input,
|
302 |
+
negative_prompt,
|
303 |
+
num_segments,
|
304 |
+
segment_threshold,
|
305 |
+
inject_interval,
|
306 |
+
seed,
|
307 |
+
color_guidance_weight,
|
308 |
+
rich_text_input,
|
309 |
+
background_aug,
|
310 |
+
],
|
311 |
+
outputs=[
|
312 |
+
plaintext_result,
|
313 |
+
richtext_result,
|
314 |
+
segments,
|
315 |
+
token_map,
|
316 |
+
],
|
317 |
+
fn=generate,
|
318 |
+
# cache_examples=True,
|
319 |
+
examples_per_page=20)
|
320 |
+
with gr.Row():
|
321 |
+
color_examples = [
|
322 |
+
[
|
323 |
+
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#00ffff"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
324 |
+
'lowres, had anatomy, bad hands, cropped, worst quality',
|
325 |
+
9,
|
326 |
+
0.25,
|
327 |
+
0.3,
|
328 |
+
6,
|
329 |
+
0.5,
|
330 |
+
None,
|
331 |
+
True
|
332 |
+
],
|
333 |
+
[
|
334 |
+
'{"ops":[{"insert":"a beautifule girl with big eye, skin, and long "},{"attributes":{"color":"#eeeeee"},"insert":"hair"},{"insert":", t-shirt, bursting with vivid color, intricate, elegant, highly detailed, photorealistic, digital painting, artstation, illustration, concept art."}]}',
|
335 |
+
'lowres, had anatomy, bad hands, cropped, worst quality',
|
336 |
+
9,
|
337 |
+
0.25,
|
338 |
+
0.3,
|
339 |
+
6,
|
340 |
+
0.1,
|
341 |
+
None,
|
342 |
+
True
|
343 |
+
],
|
344 |
+
[
|
345 |
+
'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#FD6C9E"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}',
|
346 |
+
'',
|
347 |
+
5,
|
348 |
+
0.3,
|
349 |
+
0.5,
|
350 |
+
6,
|
351 |
+
0.5,
|
352 |
+
None,
|
353 |
+
False
|
354 |
+
],
|
355 |
+
[
|
356 |
+
'{"ops":[{"insert":"A mesmerizing sight that captures the beauty of a "},{"attributes":{"color":"#4775fc"},"insert":"rose"},{"insert":" blooming, close up"}]}',
|
357 |
+
'',
|
358 |
+
3,
|
359 |
+
0.3,
|
360 |
+
0,
|
361 |
+
9,
|
362 |
+
1,
|
363 |
+
None,
|
364 |
+
False
|
365 |
+
],
|
366 |
+
[
|
367 |
+
'{"ops":[{"insert":"A "},{"attributes":{"color":"#FFD700"},"insert":"marble statue of a wolf\'s head and shoulder"},{"insert":", surrounded by colorful flowers michelangelo, detailed, intricate, full of color, led lighting, trending on artstation, 4 k, hyperrealistic, 3 5 mm, focused, extreme details, unreal engine 5, masterpiece "}]}',
|
368 |
+
'',
|
369 |
+
5,
|
370 |
+
0.3,
|
371 |
+
0,
|
372 |
+
5,
|
373 |
+
0.6,
|
374 |
+
None,
|
375 |
+
False
|
376 |
+
],
|
377 |
+
]
|
378 |
+
gr.Examples(examples=color_examples,
|
379 |
+
label='Font color examples',
|
380 |
+
inputs=[
|
381 |
+
text_input,
|
382 |
+
negative_prompt,
|
383 |
+
num_segments,
|
384 |
+
segment_threshold,
|
385 |
+
inject_interval,
|
386 |
+
seed,
|
387 |
+
color_guidance_weight,
|
388 |
+
rich_text_input,
|
389 |
+
background_aug,
|
390 |
+
],
|
391 |
+
outputs=[
|
392 |
+
plaintext_result,
|
393 |
+
richtext_result,
|
394 |
+
segments,
|
395 |
+
token_map,
|
396 |
+
],
|
397 |
+
fn=generate,
|
398 |
+
# cache_examples=True,
|
399 |
+
examples_per_page=20)
|
400 |
+
|
401 |
+
with gr.Row():
|
402 |
+
style_examples = [
|
403 |
+
[
|
404 |
+
'{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":""}]}',
|
405 |
+
'',
|
406 |
+
10,
|
407 |
+
0.45,
|
408 |
+
0,
|
409 |
+
0.2,
|
410 |
+
3,
|
411 |
+
0.5,
|
412 |
+
None,
|
413 |
+
False
|
414 |
+
],
|
415 |
+
[
|
416 |
+
'{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}',
|
417 |
+
'worst quality, dark, poor quality',
|
418 |
+
2,
|
419 |
+
0.45,
|
420 |
+
0,
|
421 |
+
9,
|
422 |
+
0.5,
|
423 |
+
None,
|
424 |
+
False
|
425 |
+
],
|
426 |
+
[
|
427 |
+
'{"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"night sky filled with stars"},{"insert":" above a "},{"attributes":{"font":"roboto"},"insert":"turbulent sea with giant waves"}]}',
|
428 |
+
'',
|
429 |
+
2,
|
430 |
+
0.45,
|
431 |
+
0,
|
432 |
+
0,
|
433 |
+
6,
|
434 |
+
0.5,
|
435 |
+
None,
|
436 |
+
False
|
437 |
+
],
|
438 |
+
]
|
439 |
+
gr.Examples(examples=style_examples,
|
440 |
+
label='Font style examples',
|
441 |
+
inputs=[
|
442 |
+
text_input,
|
443 |
+
negative_prompt,
|
444 |
+
num_segments,
|
445 |
+
segment_threshold,
|
446 |
+
inject_interval,
|
447 |
+
seed,
|
448 |
+
color_guidance_weight,
|
449 |
+
rich_text_input,
|
450 |
+
background_aug,
|
451 |
+
],
|
452 |
+
outputs=[
|
453 |
+
plaintext_result,
|
454 |
+
richtext_result,
|
455 |
+
segments,
|
456 |
+
token_map,
|
457 |
+
],
|
458 |
+
fn=generate,
|
459 |
+
# cache_examples=True,
|
460 |
+
examples_per_page=20)
|
461 |
+
|
462 |
+
with gr.Row():
|
463 |
+
size_examples = [
|
464 |
+
[
|
465 |
+
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "60px"}, "insert": "pineapple"}, {"insert": ", pepperoni, and mushroom on the top, 4k, photorealistic"}]}',
|
466 |
+
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
467 |
+
5,
|
468 |
+
0.3,
|
469 |
+
0,
|
470 |
+
13,
|
471 |
+
1,
|
472 |
+
None,
|
473 |
+
False
|
474 |
+
],
|
475 |
+
[
|
476 |
+
'{"ops": [{"insert": "A pizza with pineapple, "}, {"attributes": {"size": "20px"}, "insert": "pepperoni"}, {"insert": ", and mushroom on the top, 4k, photorealistic"}]}',
|
477 |
+
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
478 |
+
5,
|
479 |
+
0.3,
|
480 |
+
0,
|
481 |
+
13,
|
482 |
+
1,
|
483 |
+
None,
|
484 |
+
False
|
485 |
+
],
|
486 |
+
[
|
487 |
+
'{"ops": [{"insert": "A pizza with pineapple, pepperoni, and "}, {"attributes": {"size": "70px"}, "insert": "mushroom"}, {"insert": " on the top, 4k, photorealistic"}]}',
|
488 |
+
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
|
489 |
+
5,
|
490 |
+
0.3,
|
491 |
+
0,
|
492 |
+
13,
|
493 |
+
1,
|
494 |
+
None,
|
495 |
+
False
|
496 |
+
],
|
497 |
+
]
|
498 |
+
gr.Examples(examples=size_examples,
|
499 |
+
label='Font size examples',
|
500 |
+
inputs=[
|
501 |
+
text_input,
|
502 |
+
negative_prompt,
|
503 |
+
num_segments,
|
504 |
+
segment_threshold,
|
505 |
+
inject_interval,
|
506 |
+
seed,
|
507 |
+
color_guidance_weight,
|
508 |
+
rich_text_input,
|
509 |
+
background_aug,
|
510 |
+
],
|
511 |
+
outputs=[
|
512 |
+
plaintext_result,
|
513 |
+
richtext_result,
|
514 |
+
segments,
|
515 |
+
token_map,
|
516 |
+
],
|
517 |
+
fn=generate,
|
518 |
+
# cache_examples=True,
|
519 |
+
examples_per_page=20)
|
520 |
+
generate_button.click(fn=lambda: gr.update(visible=False), inputs=None, outputs=share_row, queue=False).then(
|
521 |
+
fn=generate,
|
522 |
+
inputs=[
|
523 |
+
text_input,
|
524 |
+
negative_prompt,
|
525 |
+
height,
|
526 |
+
width,
|
527 |
+
seed,
|
528 |
+
steps,
|
529 |
+
num_segments,
|
530 |
+
segment_threshold,
|
531 |
+
inject_interval,
|
532 |
+
guidance_weight,
|
533 |
+
color_guidance_weight,
|
534 |
+
rich_text_input,
|
535 |
+
background_aug
|
536 |
+
],
|
537 |
+
outputs=[plaintext_result, richtext_result, segments, token_map],
|
538 |
+
_js=get_js_data
|
539 |
+
).then(
|
540 |
+
fn=lambda: gr.update(visible=True), inputs=None, outputs=share_row, queue=False)
|
541 |
+
text_input.change(
|
542 |
+
fn=None, inputs=[text_input], outputs=None, _js=set_js_data, queue=False)
|
543 |
+
# load url param prompt to textinput
|
544 |
+
load_params_button.click(fn=lambda x: x['prompt'], inputs=[
|
545 |
+
url_params], outputs=[text_input], queue=False)
|
546 |
+
demo.load(
|
547 |
+
fn=load_url_params,
|
548 |
+
inputs=[url_params],
|
549 |
+
outputs=[load_params_button, url_params],
|
550 |
+
_js=get_window_url_params
|
551 |
+
)
|
552 |
+
demo.queue(concurrency_count=1)
|
553 |
+
demo.launch(share=False)
|
554 |
+
|
555 |
+
|
556 |
+
if __name__ == "__main__":
|
557 |
+
main()
|
models/attention.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -11,378 +11,19 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
import
|
15 |
-
import warnings
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Optional
|
18 |
|
19 |
import torch
|
20 |
import torch.nn.functional as F
|
21 |
from torch import nn
|
22 |
|
23 |
-
from diffusers.
|
24 |
-
from diffusers.models.
|
25 |
-
from diffusers.models.embeddings import
|
26 |
-
from diffusers.utils import BaseOutput
|
27 |
-
from diffusers.utils.import_utils import is_xformers_available
|
28 |
-
|
29 |
-
|
30 |
-
@dataclass
|
31 |
-
class Transformer2DModelOutput(BaseOutput):
|
32 |
-
"""
|
33 |
-
Args:
|
34 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
35 |
-
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
|
36 |
-
for the unnoised latent pixels.
|
37 |
-
"""
|
38 |
-
|
39 |
-
sample: torch.FloatTensor
|
40 |
-
|
41 |
-
|
42 |
-
if is_xformers_available():
|
43 |
-
import xformers
|
44 |
-
import xformers.ops
|
45 |
-
else:
|
46 |
-
xformers = None
|
47 |
-
|
48 |
-
|
49 |
-
class Transformer2DModel(ModelMixin, ConfigMixin):
|
50 |
-
"""
|
51 |
-
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
|
52 |
-
embeddings) inputs.
|
53 |
-
|
54 |
-
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
|
55 |
-
transformer action. Finally, reshape to image.
|
56 |
-
|
57 |
-
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
|
58 |
-
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
|
59 |
-
classes of unnoised image.
|
60 |
-
|
61 |
-
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
|
62 |
-
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
|
63 |
-
|
64 |
-
Parameters:
|
65 |
-
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
66 |
-
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
67 |
-
in_channels (`int`, *optional*):
|
68 |
-
Pass if the input is continuous. The number of channels in the input and output.
|
69 |
-
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
70 |
-
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
71 |
-
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
|
72 |
-
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
|
73 |
-
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
|
74 |
-
`ImagePositionalEmbeddings`.
|
75 |
-
num_vector_embeds (`int`, *optional*):
|
76 |
-
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
|
77 |
-
Includes the class for the masked latent pixel.
|
78 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
79 |
-
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
|
80 |
-
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
|
81 |
-
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
|
82 |
-
up to but not more than steps than `num_embeds_ada_norm`.
|
83 |
-
attention_bias (`bool`, *optional*):
|
84 |
-
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
85 |
-
"""
|
86 |
-
|
87 |
-
@register_to_config
|
88 |
-
def __init__(
|
89 |
-
self,
|
90 |
-
num_attention_heads: int = 16,
|
91 |
-
attention_head_dim: int = 88,
|
92 |
-
in_channels: Optional[int] = None,
|
93 |
-
num_layers: int = 1,
|
94 |
-
dropout: float = 0.0,
|
95 |
-
norm_num_groups: int = 32,
|
96 |
-
cross_attention_dim: Optional[int] = None,
|
97 |
-
attention_bias: bool = False,
|
98 |
-
sample_size: Optional[int] = None,
|
99 |
-
num_vector_embeds: Optional[int] = None,
|
100 |
-
activation_fn: str = "geglu",
|
101 |
-
num_embeds_ada_norm: Optional[int] = None,
|
102 |
-
use_linear_projection: bool = False,
|
103 |
-
only_cross_attention: bool = False,
|
104 |
-
):
|
105 |
-
super().__init__()
|
106 |
-
self.use_linear_projection = use_linear_projection
|
107 |
-
self.num_attention_heads = num_attention_heads
|
108 |
-
self.attention_head_dim = attention_head_dim
|
109 |
-
inner_dim = num_attention_heads * attention_head_dim
|
110 |
-
|
111 |
-
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
112 |
-
# Define whether input is continuous or discrete depending on configuration
|
113 |
-
self.is_input_continuous = in_channels is not None
|
114 |
-
self.is_input_vectorized = num_vector_embeds is not None
|
115 |
-
|
116 |
-
if self.is_input_continuous and self.is_input_vectorized:
|
117 |
-
raise ValueError(
|
118 |
-
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
119 |
-
" sure that either `in_channels` or `num_vector_embeds` is None."
|
120 |
-
)
|
121 |
-
elif not self.is_input_continuous and not self.is_input_vectorized:
|
122 |
-
raise ValueError(
|
123 |
-
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
|
124 |
-
" sure that either `in_channels` or `num_vector_embeds` is not None."
|
125 |
-
)
|
126 |
-
|
127 |
-
# 2. Define input layers
|
128 |
-
if self.is_input_continuous:
|
129 |
-
self.in_channels = in_channels
|
130 |
-
|
131 |
-
self.norm = torch.nn.GroupNorm(
|
132 |
-
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
133 |
-
if use_linear_projection:
|
134 |
-
self.proj_in = nn.Linear(in_channels, inner_dim)
|
135 |
-
else:
|
136 |
-
self.proj_in = nn.Conv2d(
|
137 |
-
in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
138 |
-
elif self.is_input_vectorized:
|
139 |
-
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
140 |
-
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
141 |
-
|
142 |
-
self.height = sample_size
|
143 |
-
self.width = sample_size
|
144 |
-
self.num_vector_embeds = num_vector_embeds
|
145 |
-
self.num_latent_pixels = self.height * self.width
|
146 |
-
|
147 |
-
self.latent_image_embedding = ImagePositionalEmbeddings(
|
148 |
-
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
149 |
-
)
|
150 |
-
|
151 |
-
# 3. Define transformers blocks
|
152 |
-
self.transformer_blocks = nn.ModuleList(
|
153 |
-
[
|
154 |
-
BasicTransformerBlock(
|
155 |
-
inner_dim,
|
156 |
-
num_attention_heads,
|
157 |
-
attention_head_dim,
|
158 |
-
dropout=dropout,
|
159 |
-
cross_attention_dim=cross_attention_dim,
|
160 |
-
activation_fn=activation_fn,
|
161 |
-
num_embeds_ada_norm=num_embeds_ada_norm,
|
162 |
-
attention_bias=attention_bias,
|
163 |
-
only_cross_attention=only_cross_attention,
|
164 |
-
)
|
165 |
-
for d in range(num_layers)
|
166 |
-
]
|
167 |
-
)
|
168 |
-
|
169 |
-
# 4. Define output layers
|
170 |
-
if self.is_input_continuous:
|
171 |
-
if use_linear_projection:
|
172 |
-
self.proj_out = nn.Linear(in_channels, inner_dim)
|
173 |
-
else:
|
174 |
-
self.proj_out = nn.Conv2d(
|
175 |
-
inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
176 |
-
elif self.is_input_vectorized:
|
177 |
-
self.norm_out = nn.LayerNorm(inner_dim)
|
178 |
-
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
179 |
-
|
180 |
-
def _set_attention_slice(self, slice_size):
|
181 |
-
for block in self.transformer_blocks:
|
182 |
-
block._set_attention_slice(slice_size)
|
183 |
-
|
184 |
-
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None,
|
185 |
-
text_format_dict={}, return_dict: bool = True):
|
186 |
-
"""
|
187 |
-
Args:
|
188 |
-
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
189 |
-
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
|
190 |
-
hidden_states
|
191 |
-
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
|
192 |
-
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
193 |
-
self-attention.
|
194 |
-
timestep ( `torch.long`, *optional*):
|
195 |
-
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
196 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
197 |
-
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
198 |
-
|
199 |
-
Returns:
|
200 |
-
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
|
201 |
-
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
|
202 |
-
tensor.
|
203 |
-
"""
|
204 |
-
# 1. Input
|
205 |
-
if self.is_input_continuous:
|
206 |
-
batch, channel, height, weight = hidden_states.shape
|
207 |
-
residual = hidden_states
|
208 |
-
|
209 |
-
hidden_states = self.norm(hidden_states)
|
210 |
-
if not self.use_linear_projection:
|
211 |
-
hidden_states = self.proj_in(hidden_states)
|
212 |
-
inner_dim = hidden_states.shape[1]
|
213 |
-
hidden_states = hidden_states.permute(
|
214 |
-
0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
215 |
-
else:
|
216 |
-
inner_dim = hidden_states.shape[1]
|
217 |
-
hidden_states = hidden_states.permute(
|
218 |
-
0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
219 |
-
hidden_states = self.proj_in(hidden_states)
|
220 |
-
elif self.is_input_vectorized:
|
221 |
-
hidden_states = self.latent_image_embedding(hidden_states)
|
222 |
-
|
223 |
-
# 2. Blocks
|
224 |
-
for block in self.transformer_blocks:
|
225 |
-
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep,
|
226 |
-
text_format_dict=text_format_dict)
|
227 |
-
|
228 |
-
# 3. Output
|
229 |
-
if self.is_input_continuous:
|
230 |
-
if not self.use_linear_projection:
|
231 |
-
hidden_states = (
|
232 |
-
hidden_states.reshape(batch, height, weight, inner_dim).permute(
|
233 |
-
0, 3, 1, 2).contiguous()
|
234 |
-
)
|
235 |
-
hidden_states = self.proj_out(hidden_states)
|
236 |
-
else:
|
237 |
-
hidden_states = self.proj_out(hidden_states)
|
238 |
-
hidden_states = (
|
239 |
-
hidden_states.reshape(batch, height, weight, inner_dim).permute(
|
240 |
-
0, 3, 1, 2).contiguous()
|
241 |
-
)
|
242 |
-
|
243 |
-
output = hidden_states + residual
|
244 |
-
elif self.is_input_vectorized:
|
245 |
-
hidden_states = self.norm_out(hidden_states)
|
246 |
-
logits = self.out(hidden_states)
|
247 |
-
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
248 |
-
logits = logits.permute(0, 2, 1)
|
249 |
-
|
250 |
-
# log(p(x_0))
|
251 |
-
output = F.log_softmax(logits.double(), dim=1).float()
|
252 |
-
|
253 |
-
if not return_dict:
|
254 |
-
return (output,)
|
255 |
-
|
256 |
-
return Transformer2DModelOutput(sample=output)
|
257 |
-
|
258 |
-
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
259 |
-
for block in self.transformer_blocks:
|
260 |
-
block._set_use_memory_efficient_attention_xformers(
|
261 |
-
use_memory_efficient_attention_xformers)
|
262 |
-
|
263 |
-
|
264 |
-
class AttentionBlock(nn.Module):
|
265 |
-
"""
|
266 |
-
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
|
267 |
-
to the N-d case.
|
268 |
-
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
269 |
-
Uses three q, k, v linear layers to compute attention.
|
270 |
-
|
271 |
-
Parameters:
|
272 |
-
channels (`int`): The number of channels in the input and output.
|
273 |
-
num_head_channels (`int`, *optional*):
|
274 |
-
The number of channels in each head. If None, then `num_heads` = 1.
|
275 |
-
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
|
276 |
-
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
|
277 |
-
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
|
278 |
-
"""
|
279 |
-
|
280 |
-
def __init__(
|
281 |
-
self,
|
282 |
-
channels: int,
|
283 |
-
num_head_channels: Optional[int] = None,
|
284 |
-
norm_num_groups: int = 32,
|
285 |
-
rescale_output_factor: float = 1.0,
|
286 |
-
eps: float = 1e-5,
|
287 |
-
):
|
288 |
-
super().__init__()
|
289 |
-
self.channels = channels
|
290 |
-
|
291 |
-
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
|
292 |
-
self.num_head_size = num_head_channels
|
293 |
-
self.group_norm = nn.GroupNorm(
|
294 |
-
num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
|
295 |
-
|
296 |
-
# define q,k,v as linear layers
|
297 |
-
self.query = nn.Linear(channels, channels)
|
298 |
-
self.key = nn.Linear(channels, channels)
|
299 |
-
self.value = nn.Linear(channels, channels)
|
300 |
-
|
301 |
-
self.rescale_output_factor = rescale_output_factor
|
302 |
-
self.proj_attn = nn.Linear(channels, channels, 1)
|
303 |
-
|
304 |
-
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
|
305 |
-
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
|
306 |
-
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
|
307 |
-
new_projection = projection.view(
|
308 |
-
new_projection_shape).permute(0, 2, 1, 3)
|
309 |
-
return new_projection
|
310 |
-
|
311 |
-
def forward(self, hidden_states):
|
312 |
-
residual = hidden_states
|
313 |
-
batch, channel, height, width = hidden_states.shape
|
314 |
-
|
315 |
-
# norm
|
316 |
-
hidden_states = self.group_norm(hidden_states)
|
317 |
-
|
318 |
-
hidden_states = hidden_states.view(
|
319 |
-
batch, channel, height * width).transpose(1, 2)
|
320 |
-
|
321 |
-
# proj to q, k, v
|
322 |
-
query_proj = self.query(hidden_states)
|
323 |
-
key_proj = self.key(hidden_states)
|
324 |
-
value_proj = self.value(hidden_states)
|
325 |
-
|
326 |
-
scale = 1 / math.sqrt(self.channels / self.num_heads)
|
327 |
-
|
328 |
-
# get scores
|
329 |
-
if self.num_heads > 1:
|
330 |
-
query_states = self.transpose_for_scores(query_proj)
|
331 |
-
key_states = self.transpose_for_scores(key_proj)
|
332 |
-
value_states = self.transpose_for_scores(value_proj)
|
333 |
-
|
334 |
-
# TODO: is there a way to perform batched matmul (e.g. baddbmm) on 4D tensors?
|
335 |
-
# or reformulate this into a 3D problem?
|
336 |
-
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum
|
337 |
-
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS
|
338 |
-
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
|
339 |
-
attention_scores = torch.matmul(
|
340 |
-
query_states, key_states.transpose(-1, -2)) * scale
|
341 |
-
else:
|
342 |
-
query_states, key_states, value_states = query_proj, key_proj, value_proj
|
343 |
-
|
344 |
-
attention_scores = torch.baddbmm(
|
345 |
-
torch.empty(
|
346 |
-
query_states.shape[0],
|
347 |
-
query_states.shape[1],
|
348 |
-
key_states.shape[1],
|
349 |
-
dtype=query_states.dtype,
|
350 |
-
device=query_states.device,
|
351 |
-
),
|
352 |
-
query_states,
|
353 |
-
key_states.transpose(-1, -2),
|
354 |
-
beta=0,
|
355 |
-
alpha=scale,
|
356 |
-
)
|
357 |
-
|
358 |
-
attention_probs = torch.softmax(
|
359 |
-
attention_scores.float(), dim=-1).type(attention_scores.dtype)
|
360 |
-
|
361 |
-
# compute attention output
|
362 |
-
if self.num_heads > 1:
|
363 |
-
# TODO: is there a way to perform batched matmul (e.g. bmm) on 4D tensors?
|
364 |
-
# or reformulate this into a 3D problem?
|
365 |
-
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum
|
366 |
-
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS
|
367 |
-
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
|
368 |
-
hidden_states = torch.matmul(attention_probs, value_states)
|
369 |
-
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
|
370 |
-
new_hidden_states_shape = hidden_states.size()[
|
371 |
-
:-2] + (self.channels,)
|
372 |
-
hidden_states = hidden_states.view(new_hidden_states_shape)
|
373 |
-
else:
|
374 |
-
hidden_states = torch.bmm(attention_probs, value_states)
|
375 |
-
|
376 |
-
# compute next hidden_states
|
377 |
-
hidden_states = self.proj_attn(hidden_states)
|
378 |
-
hidden_states = hidden_states.transpose(
|
379 |
-
-1, -2).reshape(batch, channel, height, width)
|
380 |
-
|
381 |
-
# res connect and rescale
|
382 |
-
hidden_states = (hidden_states + residual) / self.rescale_output_factor
|
383 |
-
return hidden_states
|
384 |
|
|
|
385 |
|
|
|
386 |
class BasicTransformerBlock(nn.Module):
|
387 |
r"""
|
388 |
A basic Transformer block.
|
@@ -392,7 +33,11 @@ class BasicTransformerBlock(nn.Module):
|
|
392 |
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
393 |
attention_head_dim (`int`): The number of channels in each head.
|
394 |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
395 |
-
cross_attention_dim (`int`, *optional*): The size of the
|
|
|
|
|
|
|
|
|
396 |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
397 |
num_embeds_ada_norm (:
|
398 |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
@@ -411,264 +56,153 @@ class BasicTransformerBlock(nn.Module):
|
|
411 |
num_embeds_ada_norm: Optional[int] = None,
|
412 |
attention_bias: bool = False,
|
413 |
only_cross_attention: bool = False,
|
|
|
|
|
|
|
|
|
|
|
414 |
):
|
415 |
super().__init__()
|
416 |
self.only_cross_attention = only_cross_attention
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
query_dim=dim,
|
419 |
heads=num_attention_heads,
|
420 |
dim_head=attention_head_dim,
|
421 |
dropout=dropout,
|
422 |
bias=attention_bias,
|
423 |
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
424 |
-
|
425 |
-
|
426 |
-
activation_fn=activation_fn)
|
427 |
-
self.attn2 = CrossAttention(
|
428 |
-
query_dim=dim,
|
429 |
-
cross_attention_dim=cross_attention_dim,
|
430 |
-
heads=num_attention_heads,
|
431 |
-
dim_head=attention_head_dim,
|
432 |
-
dropout=dropout,
|
433 |
-
bias=attention_bias,
|
434 |
-
) # is self-attn if context is none
|
435 |
-
|
436 |
-
# layer norms
|
437 |
-
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
438 |
-
if self.use_ada_layer_norm:
|
439 |
-
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
440 |
-
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
441 |
-
else:
|
442 |
-
self.norm1 = nn.LayerNorm(dim)
|
443 |
-
self.norm2 = nn.LayerNorm(dim)
|
444 |
-
self.norm3 = nn.LayerNorm(dim)
|
445 |
-
|
446 |
-
# if xformers is installed try to use memory_efficient_attention by default
|
447 |
-
if is_xformers_available():
|
448 |
-
try:
|
449 |
-
self._set_use_memory_efficient_attention_xformers(True)
|
450 |
-
except Exception as e:
|
451 |
-
warnings.warn(
|
452 |
-
"Could not enable memory efficient attention. Make sure xformers is installed"
|
453 |
-
f" correctly and a GPU is available: {e}"
|
454 |
-
)
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
" xformers",
|
466 |
-
name="xformers",
|
467 |
-
)
|
468 |
-
elif not torch.cuda.is_available():
|
469 |
-
raise ValueError(
|
470 |
-
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
471 |
-
" available for GPU "
|
472 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
else:
|
474 |
-
|
475 |
-
|
476 |
-
_ = xformers.ops.memory_efficient_attention(
|
477 |
-
torch.randn((1, 2, 40), device="cuda"),
|
478 |
-
torch.randn((1, 2, 40), device="cuda"),
|
479 |
-
torch.randn((1, 2, 40), device="cuda"),
|
480 |
-
)
|
481 |
-
except Exception as e:
|
482 |
-
raise e
|
483 |
-
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
484 |
-
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
485 |
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
|
|
492 |
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
else:
|
498 |
-
|
499 |
-
hidden_states = attn_out + hidden_states
|
500 |
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
|
|
|
|
|
|
|
|
505 |
)
|
506 |
-
|
507 |
-
|
508 |
-
hidden_states =
|
509 |
|
510 |
-
#
|
511 |
-
|
|
|
|
|
|
|
512 |
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
|
|
|
|
|
515 |
|
516 |
-
|
517 |
-
|
518 |
-
A cross attention layer.
|
519 |
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
527 |
-
bias (`bool`, *optional*, defaults to False):
|
528 |
-
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
529 |
-
"""
|
530 |
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
dim_head: int = 64,
|
537 |
-
dropout: float = 0.0,
|
538 |
-
bias=False,
|
539 |
-
):
|
540 |
-
super().__init__()
|
541 |
-
inner_dim = dim_head * heads
|
542 |
-
self.is_cross_attn = cross_attention_dim is not None
|
543 |
-
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
544 |
-
|
545 |
-
self.scale = dim_head**-0.5
|
546 |
-
self.heads = heads
|
547 |
-
# for slice_size > 0 the attention score computation
|
548 |
-
# is split across the batch axis to save memory
|
549 |
-
# You can set slice_size with `set_attention_slice`
|
550 |
-
self._slice_size = None
|
551 |
-
self._use_memory_efficient_attention_xformers = False
|
552 |
-
|
553 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
|
554 |
-
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
555 |
-
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
556 |
-
|
557 |
-
self.to_out = nn.ModuleList([])
|
558 |
-
self.to_out.append(nn.Linear(inner_dim, query_dim))
|
559 |
-
self.to_out.append(nn.Dropout(dropout))
|
560 |
-
|
561 |
-
def reshape_heads_to_batch_dim(self, tensor):
|
562 |
-
batch_size, seq_len, dim = tensor.shape
|
563 |
-
head_size = self.heads
|
564 |
-
tensor = tensor.reshape(batch_size, seq_len,
|
565 |
-
head_size, dim // head_size)
|
566 |
-
tensor = tensor.permute(0, 2, 1, 3).reshape(
|
567 |
-
batch_size * head_size, seq_len, dim // head_size)
|
568 |
-
return tensor
|
569 |
-
|
570 |
-
def reshape_batch_dim_to_heads(self, tensor):
|
571 |
-
batch_size, seq_len, dim = tensor.shape
|
572 |
-
head_size = self.heads
|
573 |
-
tensor = tensor.reshape(batch_size // head_size,
|
574 |
-
head_size, seq_len, dim)
|
575 |
-
tensor = tensor.permute(0, 2, 1, 3).reshape(
|
576 |
-
batch_size // head_size, seq_len, dim * head_size)
|
577 |
-
return tensor
|
578 |
-
|
579 |
-
def reshape_batch_dim_to_heads_and_average(self, tensor):
|
580 |
-
batch_size, seq_len, seq_len2 = tensor.shape
|
581 |
-
head_size = self.heads
|
582 |
-
tensor = tensor.reshape(batch_size // head_size,
|
583 |
-
head_size, seq_len, seq_len2)
|
584 |
-
return tensor.mean(1)
|
585 |
-
|
586 |
-
def forward(self, hidden_states, real_attn_probs=None, context=None, mask=None, text_format_dict={}):
|
587 |
-
batch_size, sequence_length, _ = hidden_states.shape
|
588 |
-
|
589 |
-
query = self.to_q(hidden_states)
|
590 |
-
context = context if context is not None else hidden_states
|
591 |
-
key = self.to_k(context)
|
592 |
-
value = self.to_v(context)
|
593 |
-
|
594 |
-
dim = query.shape[-1]
|
595 |
-
|
596 |
-
query = self.reshape_heads_to_batch_dim(query)
|
597 |
-
key = self.reshape_heads_to_batch_dim(key)
|
598 |
-
value = self.reshape_heads_to_batch_dim(value)
|
599 |
-
|
600 |
-
# attention, what we cannot get enough of
|
601 |
-
if self._use_memory_efficient_attention_xformers:
|
602 |
-
hidden_states = self._memory_efficient_attention_xformers(
|
603 |
-
query, key, value)
|
604 |
-
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
605 |
-
hidden_states = hidden_states.to(query.dtype)
|
606 |
else:
|
607 |
-
|
608 |
-
# only this attention function is used
|
609 |
-
hidden_states, attn_probs = self._attention(
|
610 |
-
query, key, value, real_attn_probs, **text_format_dict)
|
611 |
-
|
612 |
-
# linear proj
|
613 |
-
hidden_states = self.to_out[0](hidden_states)
|
614 |
-
# dropout
|
615 |
-
hidden_states = self.to_out[1](hidden_states)
|
616 |
-
return hidden_states, attn_probs
|
617 |
-
|
618 |
-
def _qk(self, query, key):
|
619 |
-
return torch.baddbmm(
|
620 |
-
torch.empty(query.shape[0], query.shape[1], key.shape[1],
|
621 |
-
dtype=query.dtype, device=query.device),
|
622 |
-
query,
|
623 |
-
key.transpose(-1, -2),
|
624 |
-
beta=0,
|
625 |
-
alpha=self.scale,
|
626 |
-
)
|
627 |
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
# Font size V2:
|
633 |
-
if self.is_cross_attn and word_pos is not None and font_size is not None:
|
634 |
-
assert key.shape[1] == 77
|
635 |
-
attention_score_exp = attention_scores.exp()
|
636 |
-
font_size_abs, font_size_sign = font_size.abs(), font_size.sign()
|
637 |
-
attention_score_exp[:, :, word_pos] = attention_score_exp[:, :, word_pos].clone(
|
638 |
-
)*font_size_abs
|
639 |
-
attention_probs = attention_score_exp / \
|
640 |
-
attention_score_exp.sum(-1, True)
|
641 |
-
attention_probs[:, :, word_pos] *= font_size_sign
|
642 |
-
else:
|
643 |
-
attention_probs = attention_scores.softmax(dim=-1)
|
644 |
|
645 |
-
# compute attention output
|
646 |
-
if real_attn_probs is None:
|
647 |
-
hidden_states = torch.bmm(attention_probs, value)
|
648 |
-
else:
|
649 |
-
if isinstance(real_attn_probs, dict):
|
650 |
-
for pos1, pos2 in zip(real_attn_probs['inject_pos'][0], real_attn_probs['inject_pos'][1]):
|
651 |
-
attention_probs[:, :,
|
652 |
-
pos2] = real_attn_probs['reference'][:, :, pos1]
|
653 |
-
hidden_states = torch.bmm(attention_probs, value)
|
654 |
-
else:
|
655 |
-
hidden_states = torch.bmm(real_attn_probs, value)
|
656 |
-
|
657 |
-
# reshape hidden_states
|
658 |
-
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
659 |
-
|
660 |
-
# we also return the map averaged over heads to save memory footprint
|
661 |
-
attention_probs_avg = self.reshape_batch_dim_to_heads_and_average(
|
662 |
-
attention_probs)
|
663 |
-
return hidden_states, [attention_probs_avg, attention_probs]
|
664 |
-
|
665 |
-
def _memory_efficient_attention_xformers(self, query, key, value):
|
666 |
-
query = query.contiguous()
|
667 |
-
key = key.contiguous()
|
668 |
-
value = value.contiguous()
|
669 |
-
hidden_states = xformers.ops.memory_efficient_attention(
|
670 |
-
query, key, value, attn_bias=None)
|
671 |
-
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
672 |
return hidden_states
|
673 |
|
674 |
|
@@ -682,6 +216,7 @@ class FeedForward(nn.Module):
|
|
682 |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
683 |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
684 |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
|
|
685 |
"""
|
686 |
|
687 |
def __init__(
|
@@ -691,23 +226,31 @@ class FeedForward(nn.Module):
|
|
691 |
mult: int = 4,
|
692 |
dropout: float = 0.0,
|
693 |
activation_fn: str = "geglu",
|
|
|
694 |
):
|
695 |
super().__init__()
|
696 |
inner_dim = int(dim * mult)
|
697 |
dim_out = dim_out if dim_out is not None else dim
|
698 |
|
699 |
-
if activation_fn == "
|
700 |
-
|
|
|
|
|
|
|
|
|
701 |
elif activation_fn == "geglu-approximate":
|
702 |
-
|
703 |
|
704 |
self.net = nn.ModuleList([])
|
705 |
# project in
|
706 |
-
self.net.append(
|
707 |
# project dropout
|
708 |
self.net.append(nn.Dropout(dropout))
|
709 |
# project out
|
710 |
self.net.append(nn.Linear(inner_dim, dim_out))
|
|
|
|
|
|
|
711 |
|
712 |
def forward(self, hidden_states):
|
713 |
for module in self.net:
|
@@ -715,7 +258,28 @@ class FeedForward(nn.Module):
|
|
715 |
return hidden_states
|
716 |
|
717 |
|
718 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
class GEGLU(nn.Module):
|
720 |
r"""
|
721 |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
@@ -775,130 +339,53 @@ class AdaLayerNorm(nn.Module):
|
|
775 |
return x
|
776 |
|
777 |
|
778 |
-
class
|
|
|
|
|
779 |
"""
|
780 |
-
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
|
781 |
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
attention_bias (`bool`, *optional*):
|
802 |
-
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
803 |
"""
|
804 |
|
805 |
def __init__(
|
806 |
-
self,
|
807 |
-
num_attention_heads: int = 16,
|
808 |
-
attention_head_dim: int = 88,
|
809 |
-
in_channels: Optional[int] = None,
|
810 |
-
num_layers: int = 1,
|
811 |
-
dropout: float = 0.0,
|
812 |
-
norm_num_groups: int = 32,
|
813 |
-
cross_attention_dim: Optional[int] = None,
|
814 |
-
attention_bias: bool = False,
|
815 |
-
sample_size: Optional[int] = None,
|
816 |
-
num_vector_embeds: Optional[int] = None,
|
817 |
-
activation_fn: str = "geglu",
|
818 |
-
num_embeds_ada_norm: Optional[int] = None,
|
819 |
):
|
820 |
super().__init__()
|
821 |
-
self.
|
822 |
-
|
823 |
-
Transformer2DModel(
|
824 |
-
num_attention_heads=num_attention_heads,
|
825 |
-
attention_head_dim=attention_head_dim,
|
826 |
-
in_channels=in_channels,
|
827 |
-
num_layers=num_layers,
|
828 |
-
dropout=dropout,
|
829 |
-
norm_num_groups=norm_num_groups,
|
830 |
-
cross_attention_dim=cross_attention_dim,
|
831 |
-
attention_bias=attention_bias,
|
832 |
-
sample_size=sample_size,
|
833 |
-
num_vector_embeds=num_vector_embeds,
|
834 |
-
activation_fn=activation_fn,
|
835 |
-
num_embeds_ada_norm=num_embeds_ada_norm,
|
836 |
-
)
|
837 |
-
for _ in range(2)
|
838 |
-
]
|
839 |
-
)
|
840 |
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
|
859 |
-
hidden_states
|
860 |
-
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
|
861 |
-
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
862 |
-
self-attention.
|
863 |
-
timestep ( `torch.long`, *optional*):
|
864 |
-
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
865 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
866 |
-
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
867 |
-
|
868 |
-
Returns:
|
869 |
-
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
|
870 |
-
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
|
871 |
-
tensor.
|
872 |
-
"""
|
873 |
-
input_states = hidden_states
|
874 |
-
|
875 |
-
encoded_states = []
|
876 |
-
tokens_start = 0
|
877 |
-
for i in range(2):
|
878 |
-
# for each of the two transformers, pass the corresponding condition tokens
|
879 |
-
condition_state = encoder_hidden_states[:,
|
880 |
-
tokens_start: tokens_start + self.condition_lengths[i]]
|
881 |
-
transformer_index = self.transformer_index_for_condition[i]
|
882 |
-
encoded_state = self.transformers[transformer_index](input_states, condition_state, timestep, return_dict)[
|
883 |
-
0
|
884 |
-
]
|
885 |
-
encoded_states.append(encoded_state - input_states)
|
886 |
-
tokens_start += self.condition_lengths[i]
|
887 |
-
|
888 |
-
output_states = encoded_states[0] * self.mix_ratio + \
|
889 |
-
encoded_states[1] * (1 - self.mix_ratio)
|
890 |
-
output_states = output_states + input_states
|
891 |
-
|
892 |
-
if not return_dict:
|
893 |
-
return (output_states,)
|
894 |
-
|
895 |
-
return Transformer2DModelOutput(sample=output_states)
|
896 |
-
|
897 |
-
def _set_attention_slice(self, slice_size):
|
898 |
-
for transformer in self.transformers:
|
899 |
-
transformer._set_attention_slice(slice_size)
|
900 |
-
|
901 |
-
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
902 |
-
for transformer in self.transformers:
|
903 |
-
transformer._set_use_memory_efficient_attention_xformers(
|
904 |
-
use_memory_efficient_attention_xformers)
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
|
|
|
|
|
|
15 |
|
16 |
import torch
|
17 |
import torch.nn.functional as F
|
18 |
from torch import nn
|
19 |
|
20 |
+
from diffusers.utils import maybe_allow_in_graph
|
21 |
+
from diffusers.models.activations import get_activation
|
22 |
+
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
from models.attention_processor import Attention
|
25 |
|
26 |
+
@maybe_allow_in_graph
|
27 |
class BasicTransformerBlock(nn.Module):
|
28 |
r"""
|
29 |
A basic Transformer block.
|
|
|
33 |
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
34 |
attention_head_dim (`int`): The number of channels in each head.
|
35 |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
36 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
37 |
+
only_cross_attention (`bool`, *optional*):
|
38 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
39 |
+
double_self_attention (`bool`, *optional*):
|
40 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
41 |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
42 |
num_embeds_ada_norm (:
|
43 |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
|
|
56 |
num_embeds_ada_norm: Optional[int] = None,
|
57 |
attention_bias: bool = False,
|
58 |
only_cross_attention: bool = False,
|
59 |
+
double_self_attention: bool = False,
|
60 |
+
upcast_attention: bool = False,
|
61 |
+
norm_elementwise_affine: bool = True,
|
62 |
+
norm_type: str = "layer_norm",
|
63 |
+
final_dropout: bool = False,
|
64 |
):
|
65 |
super().__init__()
|
66 |
self.only_cross_attention = only_cross_attention
|
67 |
+
|
68 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
69 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
70 |
+
|
71 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
72 |
+
raise ValueError(
|
73 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
74 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
75 |
+
)
|
76 |
+
|
77 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
78 |
+
# 1. Self-Attn
|
79 |
+
if self.use_ada_layer_norm:
|
80 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
81 |
+
elif self.use_ada_layer_norm_zero:
|
82 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
83 |
+
else:
|
84 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
85 |
+
self.attn1 = Attention(
|
86 |
query_dim=dim,
|
87 |
heads=num_attention_heads,
|
88 |
dim_head=attention_head_dim,
|
89 |
dropout=dropout,
|
90 |
bias=attention_bias,
|
91 |
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
92 |
+
upcast_attention=upcast_attention,
|
93 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# 2. Cross-Attn
|
96 |
+
if cross_attention_dim is not None or double_self_attention:
|
97 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
98 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
99 |
+
# the second cross attention block.
|
100 |
+
self.norm2 = (
|
101 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
102 |
+
if self.use_ada_layer_norm
|
103 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
)
|
105 |
+
self.attn2 = Attention(
|
106 |
+
query_dim=dim,
|
107 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
108 |
+
heads=num_attention_heads,
|
109 |
+
dim_head=attention_head_dim,
|
110 |
+
dropout=dropout,
|
111 |
+
bias=attention_bias,
|
112 |
+
upcast_attention=upcast_attention,
|
113 |
+
) # is self-attn if encoder_hidden_states is none
|
114 |
else:
|
115 |
+
self.norm2 = None
|
116 |
+
self.attn2 = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# 3. Feed-forward
|
119 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
120 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
121 |
+
|
122 |
+
# let chunk size default to None
|
123 |
+
self._chunk_size = None
|
124 |
+
self._chunk_dim = 0
|
125 |
|
126 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
127 |
+
# Sets chunk feed-forward
|
128 |
+
self._chunk_size = chunk_size
|
129 |
+
self._chunk_dim = dim
|
130 |
+
|
131 |
+
def forward(
|
132 |
+
self,
|
133 |
+
hidden_states: torch.FloatTensor,
|
134 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
135 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
136 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
137 |
+
timestep: Optional[torch.LongTensor] = None,
|
138 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
139 |
+
class_labels: Optional[torch.LongTensor] = None,
|
140 |
+
):
|
141 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
142 |
+
# 1. Self-Attention
|
143 |
+
if self.use_ada_layer_norm:
|
144 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
145 |
+
elif self.use_ada_layer_norm_zero:
|
146 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
147 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
148 |
+
)
|
149 |
else:
|
150 |
+
norm_hidden_states = self.norm1(hidden_states)
|
|
|
151 |
|
152 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
153 |
+
|
154 |
+
# Rich-Text: ignore the attention probs
|
155 |
+
attn_output, _ = self.attn1(
|
156 |
+
norm_hidden_states,
|
157 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
158 |
+
attention_mask=attention_mask,
|
159 |
+
**cross_attention_kwargs,
|
160 |
)
|
161 |
+
if self.use_ada_layer_norm_zero:
|
162 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
163 |
+
hidden_states = attn_output + hidden_states
|
164 |
|
165 |
+
# 2. Cross-Attention
|
166 |
+
if self.attn2 is not None:
|
167 |
+
norm_hidden_states = (
|
168 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
169 |
+
)
|
170 |
|
171 |
+
# Rich-Text: ignore the attention probs
|
172 |
+
attn_output, _ = self.attn2(
|
173 |
+
norm_hidden_states,
|
174 |
+
encoder_hidden_states=encoder_hidden_states,
|
175 |
+
attention_mask=encoder_attention_mask,
|
176 |
+
**cross_attention_kwargs,
|
177 |
+
)
|
178 |
+
hidden_states = attn_output + hidden_states
|
179 |
|
180 |
+
# 3. Feed-forward
|
181 |
+
norm_hidden_states = self.norm3(hidden_states)
|
182 |
|
183 |
+
if self.use_ada_layer_norm_zero:
|
184 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
|
185 |
|
186 |
+
if self._chunk_size is not None:
|
187 |
+
# "feed_forward_chunk_size" can be used to save memory
|
188 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
189 |
+
raise ValueError(
|
190 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
191 |
+
)
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
194 |
+
ff_output = torch.cat(
|
195 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
196 |
+
dim=self._chunk_dim,
|
197 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
else:
|
199 |
+
ff_output = self.ff(norm_hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
if self.use_ada_layer_norm_zero:
|
202 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
203 |
+
|
204 |
+
hidden_states = ff_output + hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
return hidden_states
|
207 |
|
208 |
|
|
|
216 |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
217 |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
218 |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
219 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
220 |
"""
|
221 |
|
222 |
def __init__(
|
|
|
226 |
mult: int = 4,
|
227 |
dropout: float = 0.0,
|
228 |
activation_fn: str = "geglu",
|
229 |
+
final_dropout: bool = False,
|
230 |
):
|
231 |
super().__init__()
|
232 |
inner_dim = int(dim * mult)
|
233 |
dim_out = dim_out if dim_out is not None else dim
|
234 |
|
235 |
+
if activation_fn == "gelu":
|
236 |
+
act_fn = GELU(dim, inner_dim)
|
237 |
+
if activation_fn == "gelu-approximate":
|
238 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
239 |
+
elif activation_fn == "geglu":
|
240 |
+
act_fn = GEGLU(dim, inner_dim)
|
241 |
elif activation_fn == "geglu-approximate":
|
242 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
243 |
|
244 |
self.net = nn.ModuleList([])
|
245 |
# project in
|
246 |
+
self.net.append(act_fn)
|
247 |
# project dropout
|
248 |
self.net.append(nn.Dropout(dropout))
|
249 |
# project out
|
250 |
self.net.append(nn.Linear(inner_dim, dim_out))
|
251 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
252 |
+
if final_dropout:
|
253 |
+
self.net.append(nn.Dropout(dropout))
|
254 |
|
255 |
def forward(self, hidden_states):
|
256 |
for module in self.net:
|
|
|
258 |
return hidden_states
|
259 |
|
260 |
|
261 |
+
class GELU(nn.Module):
|
262 |
+
r"""
|
263 |
+
GELU activation function with tanh approximation support with `approximate="tanh"`.
|
264 |
+
"""
|
265 |
+
|
266 |
+
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
|
267 |
+
super().__init__()
|
268 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
269 |
+
self.approximate = approximate
|
270 |
+
|
271 |
+
def gelu(self, gate):
|
272 |
+
if gate.device.type != "mps":
|
273 |
+
return F.gelu(gate, approximate=self.approximate)
|
274 |
+
# mps: gelu is not implemented for float16
|
275 |
+
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
|
276 |
+
|
277 |
+
def forward(self, hidden_states):
|
278 |
+
hidden_states = self.proj(hidden_states)
|
279 |
+
hidden_states = self.gelu(hidden_states)
|
280 |
+
return hidden_states
|
281 |
+
|
282 |
+
|
283 |
class GEGLU(nn.Module):
|
284 |
r"""
|
285 |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
|
|
339 |
return x
|
340 |
|
341 |
|
342 |
+
class AdaLayerNormZero(nn.Module):
|
343 |
+
"""
|
344 |
+
Norm layer adaptive layer norm zero (adaLN-Zero).
|
345 |
"""
|
|
|
346 |
|
347 |
+
def __init__(self, embedding_dim, num_embeddings):
|
348 |
+
super().__init__()
|
349 |
+
|
350 |
+
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
351 |
+
|
352 |
+
self.silu = nn.SiLU()
|
353 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
354 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
355 |
+
|
356 |
+
def forward(self, x, timestep, class_labels, hidden_dtype=None):
|
357 |
+
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
|
358 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
|
359 |
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
360 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
361 |
+
|
362 |
+
|
363 |
+
class AdaGroupNorm(nn.Module):
|
364 |
+
"""
|
365 |
+
GroupNorm layer modified to incorporate timestep embeddings.
|
|
|
|
|
366 |
"""
|
367 |
|
368 |
def __init__(
|
369 |
+
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
):
|
371 |
super().__init__()
|
372 |
+
self.num_groups = num_groups
|
373 |
+
self.eps = eps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
+
if act_fn is None:
|
376 |
+
self.act = None
|
377 |
+
else:
|
378 |
+
self.act = get_activation(act_fn)
|
379 |
+
|
380 |
+
self.linear = nn.Linear(embedding_dim, out_dim * 2)
|
381 |
+
|
382 |
+
def forward(self, x, emb):
|
383 |
+
if self.act:
|
384 |
+
emb = self.act(emb)
|
385 |
+
emb = self.linear(emb)
|
386 |
+
emb = emb[:, :, None, None]
|
387 |
+
scale, shift = emb.chunk(2, dim=1)
|
388 |
+
|
389 |
+
x = F.group_norm(x, self.num_groups, eps=self.eps)
|
390 |
+
x = x * (1 + scale) + shift
|
391 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/attention_processor.py
ADDED
@@ -0,0 +1,1687 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Callable, Optional, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import deprecate, logging, maybe_allow_in_graph
|
21 |
+
from diffusers.utils.import_utils import is_xformers_available
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
25 |
+
|
26 |
+
|
27 |
+
if is_xformers_available():
|
28 |
+
import xformers
|
29 |
+
import xformers.ops
|
30 |
+
else:
|
31 |
+
xformers = None
|
32 |
+
|
33 |
+
|
34 |
+
@maybe_allow_in_graph
|
35 |
+
class Attention(nn.Module):
|
36 |
+
r"""
|
37 |
+
A cross attention layer.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
query_dim (`int`): The number of channels in the query.
|
41 |
+
cross_attention_dim (`int`, *optional*):
|
42 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
43 |
+
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
44 |
+
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
|
45 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
46 |
+
bias (`bool`, *optional*, defaults to False):
|
47 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
query_dim: int,
|
53 |
+
cross_attention_dim: Optional[int] = None,
|
54 |
+
heads: int = 8,
|
55 |
+
dim_head: int = 64,
|
56 |
+
dropout: float = 0.0,
|
57 |
+
bias=False,
|
58 |
+
upcast_attention: bool = False,
|
59 |
+
upcast_softmax: bool = False,
|
60 |
+
cross_attention_norm: Optional[str] = None,
|
61 |
+
cross_attention_norm_num_groups: int = 32,
|
62 |
+
added_kv_proj_dim: Optional[int] = None,
|
63 |
+
norm_num_groups: Optional[int] = None,
|
64 |
+
spatial_norm_dim: Optional[int] = None,
|
65 |
+
out_bias: bool = True,
|
66 |
+
scale_qk: bool = True,
|
67 |
+
only_cross_attention: bool = False,
|
68 |
+
eps: float = 1e-5,
|
69 |
+
rescale_output_factor: float = 1.0,
|
70 |
+
residual_connection: bool = False,
|
71 |
+
_from_deprecated_attn_block=False,
|
72 |
+
processor: Optional["AttnProcessor"] = None,
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
inner_dim = dim_head * heads
|
76 |
+
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
77 |
+
self.upcast_attention = upcast_attention
|
78 |
+
self.upcast_softmax = upcast_softmax
|
79 |
+
self.rescale_output_factor = rescale_output_factor
|
80 |
+
self.residual_connection = residual_connection
|
81 |
+
self.dropout = dropout
|
82 |
+
|
83 |
+
# we make use of this private variable to know whether this class is loaded
|
84 |
+
# with an deprecated state dict so that we can convert it on the fly
|
85 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
86 |
+
|
87 |
+
self.scale_qk = scale_qk
|
88 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
89 |
+
|
90 |
+
self.heads = heads
|
91 |
+
# for slice_size > 0 the attention score computation
|
92 |
+
# is split across the batch axis to save memory
|
93 |
+
# You can set slice_size with `set_attention_slice`
|
94 |
+
self.sliceable_head_dim = heads
|
95 |
+
|
96 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
97 |
+
self.only_cross_attention = only_cross_attention
|
98 |
+
|
99 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
100 |
+
raise ValueError(
|
101 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
102 |
+
)
|
103 |
+
|
104 |
+
if norm_num_groups is not None:
|
105 |
+
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
|
106 |
+
else:
|
107 |
+
self.group_norm = None
|
108 |
+
|
109 |
+
if spatial_norm_dim is not None:
|
110 |
+
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
|
111 |
+
else:
|
112 |
+
self.spatial_norm = None
|
113 |
+
|
114 |
+
if cross_attention_norm is None:
|
115 |
+
self.norm_cross = None
|
116 |
+
elif cross_attention_norm == "layer_norm":
|
117 |
+
self.norm_cross = nn.LayerNorm(cross_attention_dim)
|
118 |
+
elif cross_attention_norm == "group_norm":
|
119 |
+
if self.added_kv_proj_dim is not None:
|
120 |
+
# The given `encoder_hidden_states` are initially of shape
|
121 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
122 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
123 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
124 |
+
# the number of channels for the group norm.
|
125 |
+
norm_cross_num_channels = added_kv_proj_dim
|
126 |
+
else:
|
127 |
+
norm_cross_num_channels = cross_attention_dim
|
128 |
+
|
129 |
+
self.norm_cross = nn.GroupNorm(
|
130 |
+
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
raise ValueError(
|
134 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
135 |
+
)
|
136 |
+
|
137 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
|
138 |
+
|
139 |
+
if not self.only_cross_attention:
|
140 |
+
# only relevant for the `AddedKVProcessor` classes
|
141 |
+
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
142 |
+
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
143 |
+
else:
|
144 |
+
self.to_k = None
|
145 |
+
self.to_v = None
|
146 |
+
|
147 |
+
if self.added_kv_proj_dim is not None:
|
148 |
+
self.add_k_proj = nn.Linear(added_kv_proj_dim, inner_dim)
|
149 |
+
self.add_v_proj = nn.Linear(added_kv_proj_dim, inner_dim)
|
150 |
+
|
151 |
+
self.to_out = nn.ModuleList([])
|
152 |
+
self.to_out.append(nn.Linear(inner_dim, query_dim, bias=out_bias))
|
153 |
+
self.to_out.append(nn.Dropout(dropout))
|
154 |
+
|
155 |
+
# set attention processor
|
156 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
157 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
158 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
159 |
+
if processor is None:
|
160 |
+
processor = (
|
161 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
162 |
+
)
|
163 |
+
self.set_processor(processor)
|
164 |
+
|
165 |
+
# Rich-Text: util function for averaging over attention heads
|
166 |
+
def reshape_batch_dim_to_heads_and_average(self, tensor):
|
167 |
+
batch_size, seq_len, seq_len2 = tensor.shape
|
168 |
+
head_size = self.heads
|
169 |
+
tensor = tensor.reshape(batch_size // head_size,
|
170 |
+
head_size, seq_len, seq_len2)
|
171 |
+
return tensor.mean(1)
|
172 |
+
|
173 |
+
def set_use_memory_efficient_attention_xformers(
|
174 |
+
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
|
175 |
+
):
|
176 |
+
is_lora = hasattr(self, "processor") and isinstance(
|
177 |
+
self.processor,
|
178 |
+
(LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, LoRAAttnAddedKVProcessor),
|
179 |
+
)
|
180 |
+
is_custom_diffusion = hasattr(self, "processor") and isinstance(
|
181 |
+
self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)
|
182 |
+
)
|
183 |
+
is_added_kv_processor = hasattr(self, "processor") and isinstance(
|
184 |
+
self.processor,
|
185 |
+
(
|
186 |
+
AttnAddedKVProcessor,
|
187 |
+
AttnAddedKVProcessor2_0,
|
188 |
+
SlicedAttnAddedKVProcessor,
|
189 |
+
XFormersAttnAddedKVProcessor,
|
190 |
+
LoRAAttnAddedKVProcessor,
|
191 |
+
),
|
192 |
+
)
|
193 |
+
|
194 |
+
if use_memory_efficient_attention_xformers:
|
195 |
+
if is_added_kv_processor and (is_lora or is_custom_diffusion):
|
196 |
+
raise NotImplementedError(
|
197 |
+
f"Memory efficient attention is currently not supported for LoRA or custom diffuson for attention processor type {self.processor}"
|
198 |
+
)
|
199 |
+
if not is_xformers_available():
|
200 |
+
raise ModuleNotFoundError(
|
201 |
+
(
|
202 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
203 |
+
" xformers"
|
204 |
+
),
|
205 |
+
name="xformers",
|
206 |
+
)
|
207 |
+
elif not torch.cuda.is_available():
|
208 |
+
raise ValueError(
|
209 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
210 |
+
" only available for GPU "
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
try:
|
214 |
+
# Make sure we can run the memory efficient attention
|
215 |
+
_ = xformers.ops.memory_efficient_attention(
|
216 |
+
torch.randn((1, 2, 40), device="cuda"),
|
217 |
+
torch.randn((1, 2, 40), device="cuda"),
|
218 |
+
torch.randn((1, 2, 40), device="cuda"),
|
219 |
+
)
|
220 |
+
except Exception as e:
|
221 |
+
raise e
|
222 |
+
|
223 |
+
if is_lora:
|
224 |
+
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
|
225 |
+
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
|
226 |
+
processor = LoRAXFormersAttnProcessor(
|
227 |
+
hidden_size=self.processor.hidden_size,
|
228 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
229 |
+
rank=self.processor.rank,
|
230 |
+
attention_op=attention_op,
|
231 |
+
)
|
232 |
+
processor.load_state_dict(self.processor.state_dict())
|
233 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
234 |
+
elif is_custom_diffusion:
|
235 |
+
processor = CustomDiffusionXFormersAttnProcessor(
|
236 |
+
train_kv=self.processor.train_kv,
|
237 |
+
train_q_out=self.processor.train_q_out,
|
238 |
+
hidden_size=self.processor.hidden_size,
|
239 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
240 |
+
attention_op=attention_op,
|
241 |
+
)
|
242 |
+
processor.load_state_dict(self.processor.state_dict())
|
243 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
244 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
245 |
+
elif is_added_kv_processor:
|
246 |
+
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
|
247 |
+
# which uses this type of cross attention ONLY because the attention mask of format
|
248 |
+
# [0, ..., -10.000, ..., 0, ...,] is not supported
|
249 |
+
# throw warning
|
250 |
+
logger.info(
|
251 |
+
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
|
252 |
+
)
|
253 |
+
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
|
254 |
+
else:
|
255 |
+
processor = XFormersAttnProcessor(attention_op=attention_op)
|
256 |
+
else:
|
257 |
+
if is_lora:
|
258 |
+
attn_processor_class = (
|
259 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
260 |
+
)
|
261 |
+
processor = attn_processor_class(
|
262 |
+
hidden_size=self.processor.hidden_size,
|
263 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
264 |
+
rank=self.processor.rank,
|
265 |
+
)
|
266 |
+
processor.load_state_dict(self.processor.state_dict())
|
267 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
268 |
+
elif is_custom_diffusion:
|
269 |
+
processor = CustomDiffusionAttnProcessor(
|
270 |
+
train_kv=self.processor.train_kv,
|
271 |
+
train_q_out=self.processor.train_q_out,
|
272 |
+
hidden_size=self.processor.hidden_size,
|
273 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
274 |
+
)
|
275 |
+
processor.load_state_dict(self.processor.state_dict())
|
276 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
277 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
278 |
+
else:
|
279 |
+
# set attention processor
|
280 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
281 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
282 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
283 |
+
processor = (
|
284 |
+
AttnProcessor2_0()
|
285 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
286 |
+
else AttnProcessor()
|
287 |
+
)
|
288 |
+
|
289 |
+
self.set_processor(processor)
|
290 |
+
|
291 |
+
def set_attention_slice(self, slice_size):
|
292 |
+
if slice_size is not None and slice_size > self.sliceable_head_dim:
|
293 |
+
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
|
294 |
+
|
295 |
+
if slice_size is not None and self.added_kv_proj_dim is not None:
|
296 |
+
processor = SlicedAttnAddedKVProcessor(slice_size)
|
297 |
+
elif slice_size is not None:
|
298 |
+
processor = SlicedAttnProcessor(slice_size)
|
299 |
+
elif self.added_kv_proj_dim is not None:
|
300 |
+
processor = AttnAddedKVProcessor()
|
301 |
+
else:
|
302 |
+
# set attention processor
|
303 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
304 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
305 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
306 |
+
processor = (
|
307 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
308 |
+
)
|
309 |
+
|
310 |
+
self.set_processor(processor)
|
311 |
+
|
312 |
+
def set_processor(self, processor: "AttnProcessor"):
|
313 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
314 |
+
# pop `processor` from `self._modules`
|
315 |
+
if (
|
316 |
+
hasattr(self, "processor")
|
317 |
+
and isinstance(self.processor, torch.nn.Module)
|
318 |
+
and not isinstance(processor, torch.nn.Module)
|
319 |
+
):
|
320 |
+
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
321 |
+
self._modules.pop("processor")
|
322 |
+
|
323 |
+
self.processor = processor
|
324 |
+
|
325 |
+
# Rich-Text: inject self-attention maps
|
326 |
+
def forward(self, hidden_states, real_attn_probs=None, attn_weights=None, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
|
327 |
+
# The `Attention` class can call different attention processors / attention functions
|
328 |
+
# here we simply pass along all tensors to the selected processor class
|
329 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
330 |
+
return self.processor(
|
331 |
+
self,
|
332 |
+
hidden_states,
|
333 |
+
real_attn_probs=real_attn_probs,
|
334 |
+
attn_weights=attn_weights,
|
335 |
+
encoder_hidden_states=encoder_hidden_states,
|
336 |
+
attention_mask=attention_mask,
|
337 |
+
**cross_attention_kwargs,
|
338 |
+
)
|
339 |
+
|
340 |
+
def batch_to_head_dim(self, tensor):
|
341 |
+
head_size = self.heads
|
342 |
+
batch_size, seq_len, dim = tensor.shape
|
343 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
344 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
345 |
+
return tensor
|
346 |
+
|
347 |
+
def head_to_batch_dim(self, tensor, out_dim=3):
|
348 |
+
head_size = self.heads
|
349 |
+
batch_size, seq_len, dim = tensor.shape
|
350 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
351 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
352 |
+
|
353 |
+
if out_dim == 3:
|
354 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
355 |
+
|
356 |
+
return tensor
|
357 |
+
|
358 |
+
# Rich-Text: return attention scores
|
359 |
+
def get_attention_scores(self, query, key, attention_mask=None, attn_weights=False):
|
360 |
+
dtype = query.dtype
|
361 |
+
if self.upcast_attention:
|
362 |
+
query = query.float()
|
363 |
+
key = key.float()
|
364 |
+
|
365 |
+
if attention_mask is None:
|
366 |
+
baddbmm_input = torch.empty(
|
367 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
368 |
+
)
|
369 |
+
beta = 0
|
370 |
+
else:
|
371 |
+
baddbmm_input = attention_mask
|
372 |
+
beta = 1
|
373 |
+
|
374 |
+
attention_scores = torch.baddbmm(
|
375 |
+
baddbmm_input,
|
376 |
+
query,
|
377 |
+
key.transpose(-1, -2),
|
378 |
+
beta=beta,
|
379 |
+
alpha=self.scale,
|
380 |
+
)
|
381 |
+
del baddbmm_input
|
382 |
+
|
383 |
+
if self.upcast_softmax:
|
384 |
+
attention_scores = attention_scores.float()
|
385 |
+
|
386 |
+
# Rich-Text: font size
|
387 |
+
if attn_weights is not None:
|
388 |
+
assert key.shape[1] == 77
|
389 |
+
attention_scores_stable = attention_scores - attention_scores.max(-1, True)[0]
|
390 |
+
attention_score_exp = attention_scores_stable.float().exp()
|
391 |
+
# attention_score_exp = attention_scores.float().exp()
|
392 |
+
font_size_abs, font_size_sign = attn_weights['font_size'].abs(), attn_weights['font_size'].sign()
|
393 |
+
attention_score_exp[:, :, attn_weights['word_pos']] = attention_score_exp[:, :, attn_weights['word_pos']].clone(
|
394 |
+
)*font_size_abs
|
395 |
+
attention_probs = attention_score_exp / attention_score_exp.sum(-1, True)
|
396 |
+
attention_probs[:, :, attn_weights['word_pos']] *= font_size_sign
|
397 |
+
# import ipdb; ipdb.set_trace()
|
398 |
+
if attention_probs.isnan().any():
|
399 |
+
import ipdb; ipdb.set_trace()
|
400 |
+
else:
|
401 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
402 |
+
|
403 |
+
del attention_scores
|
404 |
+
|
405 |
+
attention_probs = attention_probs.to(dtype)
|
406 |
+
|
407 |
+
return attention_probs
|
408 |
+
|
409 |
+
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3):
|
410 |
+
if batch_size is None:
|
411 |
+
deprecate(
|
412 |
+
"batch_size=None",
|
413 |
+
"0.0.15",
|
414 |
+
(
|
415 |
+
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect"
|
416 |
+
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to"
|
417 |
+
" `prepare_attention_mask` when preparing the attention_mask."
|
418 |
+
),
|
419 |
+
)
|
420 |
+
batch_size = 1
|
421 |
+
|
422 |
+
head_size = self.heads
|
423 |
+
if attention_mask is None:
|
424 |
+
return attention_mask
|
425 |
+
|
426 |
+
current_length: int = attention_mask.shape[-1]
|
427 |
+
if current_length != target_length:
|
428 |
+
if attention_mask.device.type == "mps":
|
429 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
430 |
+
# Instead, we can manually construct the padding tensor.
|
431 |
+
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
|
432 |
+
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
|
433 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
434 |
+
else:
|
435 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
436 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
437 |
+
# remaining_length: int = target_length - current_length
|
438 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
439 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
440 |
+
|
441 |
+
if out_dim == 3:
|
442 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
443 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
444 |
+
elif out_dim == 4:
|
445 |
+
attention_mask = attention_mask.unsqueeze(1)
|
446 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
447 |
+
|
448 |
+
return attention_mask
|
449 |
+
|
450 |
+
def norm_encoder_hidden_states(self, encoder_hidden_states):
|
451 |
+
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
452 |
+
|
453 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
454 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
455 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
456 |
+
# Group norm norms along the channels dimension and expects
|
457 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
458 |
+
# to norm along the hidden dimension, so we need to move
|
459 |
+
# (batch_size, sequence_length, hidden_size) ->
|
460 |
+
# (batch_size, hidden_size, sequence_length)
|
461 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
462 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
463 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
464 |
+
else:
|
465 |
+
assert False
|
466 |
+
|
467 |
+
return encoder_hidden_states
|
468 |
+
|
469 |
+
|
470 |
+
class AttnProcessor:
|
471 |
+
r"""
|
472 |
+
Default processor for performing attention-related computations.
|
473 |
+
"""
|
474 |
+
|
475 |
+
# Rich-Text: inject self-attention maps
|
476 |
+
def __call__(
|
477 |
+
self,
|
478 |
+
attn: Attention,
|
479 |
+
hidden_states,
|
480 |
+
real_attn_probs=None,
|
481 |
+
attn_weights=None,
|
482 |
+
encoder_hidden_states=None,
|
483 |
+
attention_mask=None,
|
484 |
+
temb=None,
|
485 |
+
):
|
486 |
+
residual = hidden_states
|
487 |
+
|
488 |
+
if attn.spatial_norm is not None:
|
489 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
490 |
+
|
491 |
+
input_ndim = hidden_states.ndim
|
492 |
+
|
493 |
+
if input_ndim == 4:
|
494 |
+
batch_size, channel, height, width = hidden_states.shape
|
495 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
496 |
+
|
497 |
+
batch_size, sequence_length, _ = (
|
498 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
499 |
+
)
|
500 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
501 |
+
|
502 |
+
if attn.group_norm is not None:
|
503 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
504 |
+
|
505 |
+
query = attn.to_q(hidden_states)
|
506 |
+
|
507 |
+
if encoder_hidden_states is None:
|
508 |
+
encoder_hidden_states = hidden_states
|
509 |
+
elif attn.norm_cross:
|
510 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
511 |
+
|
512 |
+
key = attn.to_k(encoder_hidden_states)
|
513 |
+
value = attn.to_v(encoder_hidden_states)
|
514 |
+
|
515 |
+
query = attn.head_to_batch_dim(query)
|
516 |
+
key = attn.head_to_batch_dim(key)
|
517 |
+
value = attn.head_to_batch_dim(value)
|
518 |
+
|
519 |
+
if real_attn_probs is None:
|
520 |
+
# Rich-Text: font size
|
521 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask, attn_weights=attn_weights)
|
522 |
+
else:
|
523 |
+
# Rich-Text: inject self-attention maps
|
524 |
+
attention_probs = real_attn_probs
|
525 |
+
hidden_states = torch.bmm(attention_probs, value)
|
526 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
527 |
+
|
528 |
+
# linear proj
|
529 |
+
hidden_states = attn.to_out[0](hidden_states)
|
530 |
+
# dropout
|
531 |
+
hidden_states = attn.to_out[1](hidden_states)
|
532 |
+
|
533 |
+
if input_ndim == 4:
|
534 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
535 |
+
|
536 |
+
if attn.residual_connection:
|
537 |
+
hidden_states = hidden_states + residual
|
538 |
+
|
539 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
540 |
+
|
541 |
+
# Rich-Text Modified: return attn probs
|
542 |
+
# We return the map averaged over heads to save memory footprint
|
543 |
+
attention_probs_avg = attn.reshape_batch_dim_to_heads_and_average(
|
544 |
+
attention_probs)
|
545 |
+
return hidden_states, [attention_probs_avg, attention_probs]
|
546 |
+
|
547 |
+
|
548 |
+
class LoRALinearLayer(nn.Module):
|
549 |
+
def __init__(self, in_features, out_features, rank=4, network_alpha=None):
|
550 |
+
super().__init__()
|
551 |
+
|
552 |
+
if rank > min(in_features, out_features):
|
553 |
+
raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")
|
554 |
+
|
555 |
+
self.down = nn.Linear(in_features, rank, bias=False)
|
556 |
+
self.up = nn.Linear(rank, out_features, bias=False)
|
557 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
558 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
559 |
+
self.network_alpha = network_alpha
|
560 |
+
self.rank = rank
|
561 |
+
|
562 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
563 |
+
nn.init.zeros_(self.up.weight)
|
564 |
+
|
565 |
+
def forward(self, hidden_states):
|
566 |
+
orig_dtype = hidden_states.dtype
|
567 |
+
dtype = self.down.weight.dtype
|
568 |
+
|
569 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
570 |
+
up_hidden_states = self.up(down_hidden_states)
|
571 |
+
|
572 |
+
if self.network_alpha is not None:
|
573 |
+
up_hidden_states *= self.network_alpha / self.rank
|
574 |
+
|
575 |
+
return up_hidden_states.to(orig_dtype)
|
576 |
+
|
577 |
+
|
578 |
+
class LoRAAttnProcessor(nn.Module):
|
579 |
+
r"""
|
580 |
+
Processor for implementing the LoRA attention mechanism.
|
581 |
+
|
582 |
+
Args:
|
583 |
+
hidden_size (`int`, *optional*):
|
584 |
+
The hidden size of the attention layer.
|
585 |
+
cross_attention_dim (`int`, *optional*):
|
586 |
+
The number of channels in the `encoder_hidden_states`.
|
587 |
+
rank (`int`, defaults to 4):
|
588 |
+
The dimension of the LoRA update matrices.
|
589 |
+
network_alpha (`int`, *optional*):
|
590 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
591 |
+
"""
|
592 |
+
|
593 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None):
|
594 |
+
super().__init__()
|
595 |
+
|
596 |
+
self.hidden_size = hidden_size
|
597 |
+
self.cross_attention_dim = cross_attention_dim
|
598 |
+
self.rank = rank
|
599 |
+
|
600 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
601 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
602 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
603 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
604 |
+
|
605 |
+
def __call__(
|
606 |
+
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None
|
607 |
+
):
|
608 |
+
residual = hidden_states
|
609 |
+
|
610 |
+
if attn.spatial_norm is not None:
|
611 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
612 |
+
|
613 |
+
input_ndim = hidden_states.ndim
|
614 |
+
|
615 |
+
if input_ndim == 4:
|
616 |
+
batch_size, channel, height, width = hidden_states.shape
|
617 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
618 |
+
|
619 |
+
batch_size, sequence_length, _ = (
|
620 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
621 |
+
)
|
622 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
623 |
+
|
624 |
+
if attn.group_norm is not None:
|
625 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
626 |
+
|
627 |
+
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
|
628 |
+
query = attn.head_to_batch_dim(query)
|
629 |
+
|
630 |
+
if encoder_hidden_states is None:
|
631 |
+
encoder_hidden_states = hidden_states
|
632 |
+
elif attn.norm_cross:
|
633 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
634 |
+
|
635 |
+
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
|
636 |
+
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)
|
637 |
+
|
638 |
+
key = attn.head_to_batch_dim(key)
|
639 |
+
value = attn.head_to_batch_dim(value)
|
640 |
+
|
641 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
642 |
+
hidden_states = torch.bmm(attention_probs, value)
|
643 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
644 |
+
|
645 |
+
# linear proj
|
646 |
+
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
|
647 |
+
# dropout
|
648 |
+
hidden_states = attn.to_out[1](hidden_states)
|
649 |
+
|
650 |
+
if input_ndim == 4:
|
651 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
652 |
+
|
653 |
+
if attn.residual_connection:
|
654 |
+
hidden_states = hidden_states + residual
|
655 |
+
|
656 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
657 |
+
|
658 |
+
return hidden_states
|
659 |
+
|
660 |
+
|
661 |
+
class CustomDiffusionAttnProcessor(nn.Module):
|
662 |
+
r"""
|
663 |
+
Processor for implementing attention for the Custom Diffusion method.
|
664 |
+
|
665 |
+
Args:
|
666 |
+
train_kv (`bool`, defaults to `True`):
|
667 |
+
Whether to newly train the key and value matrices corresponding to the text features.
|
668 |
+
train_q_out (`bool`, defaults to `True`):
|
669 |
+
Whether to newly train query matrices corresponding to the latent image features.
|
670 |
+
hidden_size (`int`, *optional*, defaults to `None`):
|
671 |
+
The hidden size of the attention layer.
|
672 |
+
cross_attention_dim (`int`, *optional*, defaults to `None`):
|
673 |
+
The number of channels in the `encoder_hidden_states`.
|
674 |
+
out_bias (`bool`, defaults to `True`):
|
675 |
+
Whether to include the bias parameter in `train_q_out`.
|
676 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
677 |
+
The dropout probability to use.
|
678 |
+
"""
|
679 |
+
|
680 |
+
def __init__(
|
681 |
+
self,
|
682 |
+
train_kv=True,
|
683 |
+
train_q_out=True,
|
684 |
+
hidden_size=None,
|
685 |
+
cross_attention_dim=None,
|
686 |
+
out_bias=True,
|
687 |
+
dropout=0.0,
|
688 |
+
):
|
689 |
+
super().__init__()
|
690 |
+
self.train_kv = train_kv
|
691 |
+
self.train_q_out = train_q_out
|
692 |
+
|
693 |
+
self.hidden_size = hidden_size
|
694 |
+
self.cross_attention_dim = cross_attention_dim
|
695 |
+
|
696 |
+
# `_custom_diffusion` id for easy serialization and loading.
|
697 |
+
if self.train_kv:
|
698 |
+
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
699 |
+
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
700 |
+
if self.train_q_out:
|
701 |
+
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
|
702 |
+
self.to_out_custom_diffusion = nn.ModuleList([])
|
703 |
+
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
|
704 |
+
self.to_out_custom_diffusion.append(nn.Dropout(dropout))
|
705 |
+
|
706 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
707 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
708 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
709 |
+
if self.train_q_out:
|
710 |
+
query = self.to_q_custom_diffusion(hidden_states)
|
711 |
+
else:
|
712 |
+
query = attn.to_q(hidden_states)
|
713 |
+
|
714 |
+
if encoder_hidden_states is None:
|
715 |
+
crossattn = False
|
716 |
+
encoder_hidden_states = hidden_states
|
717 |
+
else:
|
718 |
+
crossattn = True
|
719 |
+
if attn.norm_cross:
|
720 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
721 |
+
|
722 |
+
if self.train_kv:
|
723 |
+
key = self.to_k_custom_diffusion(encoder_hidden_states)
|
724 |
+
value = self.to_v_custom_diffusion(encoder_hidden_states)
|
725 |
+
else:
|
726 |
+
key = attn.to_k(encoder_hidden_states)
|
727 |
+
value = attn.to_v(encoder_hidden_states)
|
728 |
+
|
729 |
+
if crossattn:
|
730 |
+
detach = torch.ones_like(key)
|
731 |
+
detach[:, :1, :] = detach[:, :1, :] * 0.0
|
732 |
+
key = detach * key + (1 - detach) * key.detach()
|
733 |
+
value = detach * value + (1 - detach) * value.detach()
|
734 |
+
|
735 |
+
query = attn.head_to_batch_dim(query)
|
736 |
+
key = attn.head_to_batch_dim(key)
|
737 |
+
value = attn.head_to_batch_dim(value)
|
738 |
+
|
739 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
740 |
+
hidden_states = torch.bmm(attention_probs, value)
|
741 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
742 |
+
|
743 |
+
if self.train_q_out:
|
744 |
+
# linear proj
|
745 |
+
hidden_states = self.to_out_custom_diffusion[0](hidden_states)
|
746 |
+
# dropout
|
747 |
+
hidden_states = self.to_out_custom_diffusion[1](hidden_states)
|
748 |
+
else:
|
749 |
+
# linear proj
|
750 |
+
hidden_states = attn.to_out[0](hidden_states)
|
751 |
+
# dropout
|
752 |
+
hidden_states = attn.to_out[1](hidden_states)
|
753 |
+
|
754 |
+
return hidden_states
|
755 |
+
|
756 |
+
|
757 |
+
class AttnAddedKVProcessor:
|
758 |
+
r"""
|
759 |
+
Processor for performing attention-related computations with extra learnable key and value matrices for the text
|
760 |
+
encoder.
|
761 |
+
"""
|
762 |
+
|
763 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
764 |
+
residual = hidden_states
|
765 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
766 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
767 |
+
|
768 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
769 |
+
|
770 |
+
if encoder_hidden_states is None:
|
771 |
+
encoder_hidden_states = hidden_states
|
772 |
+
elif attn.norm_cross:
|
773 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
774 |
+
|
775 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
776 |
+
|
777 |
+
query = attn.to_q(hidden_states)
|
778 |
+
query = attn.head_to_batch_dim(query)
|
779 |
+
|
780 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
781 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
782 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
|
783 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
|
784 |
+
|
785 |
+
if not attn.only_cross_attention:
|
786 |
+
key = attn.to_k(hidden_states)
|
787 |
+
value = attn.to_v(hidden_states)
|
788 |
+
key = attn.head_to_batch_dim(key)
|
789 |
+
value = attn.head_to_batch_dim(value)
|
790 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
791 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
792 |
+
else:
|
793 |
+
key = encoder_hidden_states_key_proj
|
794 |
+
value = encoder_hidden_states_value_proj
|
795 |
+
|
796 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
797 |
+
hidden_states = torch.bmm(attention_probs, value)
|
798 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
799 |
+
|
800 |
+
# linear proj
|
801 |
+
hidden_states = attn.to_out[0](hidden_states)
|
802 |
+
# dropout
|
803 |
+
hidden_states = attn.to_out[1](hidden_states)
|
804 |
+
|
805 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
806 |
+
hidden_states = hidden_states + residual
|
807 |
+
|
808 |
+
return hidden_states
|
809 |
+
|
810 |
+
|
811 |
+
class AttnAddedKVProcessor2_0:
|
812 |
+
r"""
|
813 |
+
Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
|
814 |
+
learnable key and value matrices for the text encoder.
|
815 |
+
"""
|
816 |
+
|
817 |
+
def __init__(self):
|
818 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
819 |
+
raise ImportError(
|
820 |
+
"AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
821 |
+
)
|
822 |
+
|
823 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
824 |
+
residual = hidden_states
|
825 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
826 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
827 |
+
|
828 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)
|
829 |
+
|
830 |
+
if encoder_hidden_states is None:
|
831 |
+
encoder_hidden_states = hidden_states
|
832 |
+
elif attn.norm_cross:
|
833 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
834 |
+
|
835 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
836 |
+
|
837 |
+
query = attn.to_q(hidden_states)
|
838 |
+
query = attn.head_to_batch_dim(query, out_dim=4)
|
839 |
+
|
840 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
841 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
842 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
|
843 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)
|
844 |
+
|
845 |
+
if not attn.only_cross_attention:
|
846 |
+
key = attn.to_k(hidden_states)
|
847 |
+
value = attn.to_v(hidden_states)
|
848 |
+
key = attn.head_to_batch_dim(key, out_dim=4)
|
849 |
+
value = attn.head_to_batch_dim(value, out_dim=4)
|
850 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
851 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
852 |
+
else:
|
853 |
+
key = encoder_hidden_states_key_proj
|
854 |
+
value = encoder_hidden_states_value_proj
|
855 |
+
|
856 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
857 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
858 |
+
hidden_states = F.scaled_dot_product_attention(
|
859 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
860 |
+
)
|
861 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])
|
862 |
+
|
863 |
+
# linear proj
|
864 |
+
hidden_states = attn.to_out[0](hidden_states)
|
865 |
+
# dropout
|
866 |
+
hidden_states = attn.to_out[1](hidden_states)
|
867 |
+
|
868 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
869 |
+
hidden_states = hidden_states + residual
|
870 |
+
|
871 |
+
return hidden_states
|
872 |
+
|
873 |
+
|
874 |
+
class LoRAAttnAddedKVProcessor(nn.Module):
|
875 |
+
r"""
|
876 |
+
Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text
|
877 |
+
encoder.
|
878 |
+
|
879 |
+
Args:
|
880 |
+
hidden_size (`int`, *optional*):
|
881 |
+
The hidden size of the attention layer.
|
882 |
+
cross_attention_dim (`int`, *optional*, defaults to `None`):
|
883 |
+
The number of channels in the `encoder_hidden_states`.
|
884 |
+
rank (`int`, defaults to 4):
|
885 |
+
The dimension of the LoRA update matrices.
|
886 |
+
|
887 |
+
"""
|
888 |
+
|
889 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None):
|
890 |
+
super().__init__()
|
891 |
+
|
892 |
+
self.hidden_size = hidden_size
|
893 |
+
self.cross_attention_dim = cross_attention_dim
|
894 |
+
self.rank = rank
|
895 |
+
|
896 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
897 |
+
self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
898 |
+
self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
899 |
+
self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
900 |
+
self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
901 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
902 |
+
|
903 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
|
904 |
+
residual = hidden_states
|
905 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
906 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
907 |
+
|
908 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
909 |
+
|
910 |
+
if encoder_hidden_states is None:
|
911 |
+
encoder_hidden_states = hidden_states
|
912 |
+
elif attn.norm_cross:
|
913 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
914 |
+
|
915 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
916 |
+
|
917 |
+
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
|
918 |
+
query = attn.head_to_batch_dim(query)
|
919 |
+
|
920 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + scale * self.add_k_proj_lora(
|
921 |
+
encoder_hidden_states
|
922 |
+
)
|
923 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + scale * self.add_v_proj_lora(
|
924 |
+
encoder_hidden_states
|
925 |
+
)
|
926 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
|
927 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
|
928 |
+
|
929 |
+
if not attn.only_cross_attention:
|
930 |
+
key = attn.to_k(hidden_states) + scale * self.to_k_lora(hidden_states)
|
931 |
+
value = attn.to_v(hidden_states) + scale * self.to_v_lora(hidden_states)
|
932 |
+
key = attn.head_to_batch_dim(key)
|
933 |
+
value = attn.head_to_batch_dim(value)
|
934 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
935 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
936 |
+
else:
|
937 |
+
key = encoder_hidden_states_key_proj
|
938 |
+
value = encoder_hidden_states_value_proj
|
939 |
+
|
940 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
941 |
+
hidden_states = torch.bmm(attention_probs, value)
|
942 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
943 |
+
|
944 |
+
# linear proj
|
945 |
+
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
|
946 |
+
# dropout
|
947 |
+
hidden_states = attn.to_out[1](hidden_states)
|
948 |
+
|
949 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
950 |
+
hidden_states = hidden_states + residual
|
951 |
+
|
952 |
+
return hidden_states
|
953 |
+
|
954 |
+
|
955 |
+
class XFormersAttnAddedKVProcessor:
|
956 |
+
r"""
|
957 |
+
Processor for implementing memory efficient attention using xFormers.
|
958 |
+
|
959 |
+
Args:
|
960 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
961 |
+
The base
|
962 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
|
963 |
+
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
|
964 |
+
operator.
|
965 |
+
"""
|
966 |
+
|
967 |
+
def __init__(self, attention_op: Optional[Callable] = None):
|
968 |
+
self.attention_op = attention_op
|
969 |
+
|
970 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
971 |
+
residual = hidden_states
|
972 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
973 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
974 |
+
|
975 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
976 |
+
|
977 |
+
if encoder_hidden_states is None:
|
978 |
+
encoder_hidden_states = hidden_states
|
979 |
+
elif attn.norm_cross:
|
980 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
981 |
+
|
982 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
983 |
+
|
984 |
+
query = attn.to_q(hidden_states)
|
985 |
+
query = attn.head_to_batch_dim(query)
|
986 |
+
|
987 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
988 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
989 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
|
990 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
|
991 |
+
|
992 |
+
if not attn.only_cross_attention:
|
993 |
+
key = attn.to_k(hidden_states)
|
994 |
+
value = attn.to_v(hidden_states)
|
995 |
+
key = attn.head_to_batch_dim(key)
|
996 |
+
value = attn.head_to_batch_dim(value)
|
997 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
998 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
999 |
+
else:
|
1000 |
+
key = encoder_hidden_states_key_proj
|
1001 |
+
value = encoder_hidden_states_value_proj
|
1002 |
+
|
1003 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
1004 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
1005 |
+
)
|
1006 |
+
hidden_states = hidden_states.to(query.dtype)
|
1007 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1008 |
+
|
1009 |
+
# linear proj
|
1010 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1011 |
+
# dropout
|
1012 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1013 |
+
|
1014 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
1015 |
+
hidden_states = hidden_states + residual
|
1016 |
+
|
1017 |
+
return hidden_states
|
1018 |
+
|
1019 |
+
|
1020 |
+
class XFormersAttnProcessor:
|
1021 |
+
r"""
|
1022 |
+
Processor for implementing memory efficient attention using xFormers.
|
1023 |
+
|
1024 |
+
Args:
|
1025 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
1026 |
+
The base
|
1027 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
|
1028 |
+
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
|
1029 |
+
operator.
|
1030 |
+
"""
|
1031 |
+
|
1032 |
+
def __init__(self, attention_op: Optional[Callable] = None):
|
1033 |
+
self.attention_op = attention_op
|
1034 |
+
|
1035 |
+
def __call__(
|
1036 |
+
self,
|
1037 |
+
attn: Attention,
|
1038 |
+
hidden_states: torch.FloatTensor,
|
1039 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1040 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1041 |
+
temb: Optional[torch.FloatTensor] = None,
|
1042 |
+
):
|
1043 |
+
residual = hidden_states
|
1044 |
+
|
1045 |
+
if attn.spatial_norm is not None:
|
1046 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1047 |
+
|
1048 |
+
input_ndim = hidden_states.ndim
|
1049 |
+
|
1050 |
+
if input_ndim == 4:
|
1051 |
+
batch_size, channel, height, width = hidden_states.shape
|
1052 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1053 |
+
|
1054 |
+
batch_size, key_tokens, _ = (
|
1055 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
|
1059 |
+
if attention_mask is not None:
|
1060 |
+
# expand our mask's singleton query_tokens dimension:
|
1061 |
+
# [batch*heads, 1, key_tokens] ->
|
1062 |
+
# [batch*heads, query_tokens, key_tokens]
|
1063 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
1064 |
+
# [batch*heads, query_tokens, key_tokens]
|
1065 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
1066 |
+
_, query_tokens, _ = hidden_states.shape
|
1067 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
1068 |
+
|
1069 |
+
if attn.group_norm is not None:
|
1070 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1071 |
+
|
1072 |
+
query = attn.to_q(hidden_states)
|
1073 |
+
|
1074 |
+
if encoder_hidden_states is None:
|
1075 |
+
encoder_hidden_states = hidden_states
|
1076 |
+
elif attn.norm_cross:
|
1077 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1078 |
+
|
1079 |
+
key = attn.to_k(encoder_hidden_states)
|
1080 |
+
value = attn.to_v(encoder_hidden_states)
|
1081 |
+
|
1082 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1083 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1084 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1085 |
+
|
1086 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
1087 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
1088 |
+
)
|
1089 |
+
hidden_states = hidden_states.to(query.dtype)
|
1090 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1091 |
+
|
1092 |
+
# linear proj
|
1093 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1094 |
+
# dropout
|
1095 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1096 |
+
|
1097 |
+
if input_ndim == 4:
|
1098 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1099 |
+
|
1100 |
+
if attn.residual_connection:
|
1101 |
+
hidden_states = hidden_states + residual
|
1102 |
+
|
1103 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1104 |
+
|
1105 |
+
return hidden_states
|
1106 |
+
|
1107 |
+
|
1108 |
+
class AttnProcessor2_0:
|
1109 |
+
r"""
|
1110 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
1111 |
+
"""
|
1112 |
+
|
1113 |
+
def __init__(self):
|
1114 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
1115 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
1116 |
+
|
1117 |
+
def __call__(
|
1118 |
+
self,
|
1119 |
+
attn: Attention,
|
1120 |
+
hidden_states,
|
1121 |
+
encoder_hidden_states=None,
|
1122 |
+
attention_mask=None,
|
1123 |
+
temb=None,
|
1124 |
+
):
|
1125 |
+
residual = hidden_states
|
1126 |
+
|
1127 |
+
if attn.spatial_norm is not None:
|
1128 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1129 |
+
|
1130 |
+
input_ndim = hidden_states.ndim
|
1131 |
+
|
1132 |
+
if input_ndim == 4:
|
1133 |
+
batch_size, channel, height, width = hidden_states.shape
|
1134 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1135 |
+
|
1136 |
+
batch_size, sequence_length, _ = (
|
1137 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1138 |
+
)
|
1139 |
+
inner_dim = hidden_states.shape[-1]
|
1140 |
+
|
1141 |
+
if attention_mask is not None:
|
1142 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1143 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
1144 |
+
# (batch, heads, source_length, target_length)
|
1145 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
1146 |
+
|
1147 |
+
if attn.group_norm is not None:
|
1148 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1149 |
+
|
1150 |
+
query = attn.to_q(hidden_states)
|
1151 |
+
|
1152 |
+
if encoder_hidden_states is None:
|
1153 |
+
encoder_hidden_states = hidden_states
|
1154 |
+
elif attn.norm_cross:
|
1155 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1156 |
+
|
1157 |
+
key = attn.to_k(encoder_hidden_states)
|
1158 |
+
value = attn.to_v(encoder_hidden_states)
|
1159 |
+
|
1160 |
+
head_dim = inner_dim // attn.heads
|
1161 |
+
|
1162 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1163 |
+
|
1164 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1165 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1166 |
+
|
1167 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1168 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1169 |
+
hidden_states = F.scaled_dot_product_attention(
|
1170 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1174 |
+
hidden_states = hidden_states.to(query.dtype)
|
1175 |
+
|
1176 |
+
# linear proj
|
1177 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1178 |
+
# dropout
|
1179 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1180 |
+
|
1181 |
+
if input_ndim == 4:
|
1182 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1183 |
+
|
1184 |
+
if attn.residual_connection:
|
1185 |
+
hidden_states = hidden_states + residual
|
1186 |
+
|
1187 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1188 |
+
|
1189 |
+
return hidden_states
|
1190 |
+
|
1191 |
+
|
1192 |
+
class LoRAXFormersAttnProcessor(nn.Module):
|
1193 |
+
r"""
|
1194 |
+
Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers.
|
1195 |
+
|
1196 |
+
Args:
|
1197 |
+
hidden_size (`int`, *optional*):
|
1198 |
+
The hidden size of the attention layer.
|
1199 |
+
cross_attention_dim (`int`, *optional*):
|
1200 |
+
The number of channels in the `encoder_hidden_states`.
|
1201 |
+
rank (`int`, defaults to 4):
|
1202 |
+
The dimension of the LoRA update matrices.
|
1203 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
1204 |
+
The base
|
1205 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
|
1206 |
+
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
|
1207 |
+
operator.
|
1208 |
+
network_alpha (`int`, *optional*):
|
1209 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
1210 |
+
|
1211 |
+
"""
|
1212 |
+
|
1213 |
+
def __init__(
|
1214 |
+
self, hidden_size, cross_attention_dim, rank=4, attention_op: Optional[Callable] = None, network_alpha=None
|
1215 |
+
):
|
1216 |
+
super().__init__()
|
1217 |
+
|
1218 |
+
self.hidden_size = hidden_size
|
1219 |
+
self.cross_attention_dim = cross_attention_dim
|
1220 |
+
self.rank = rank
|
1221 |
+
self.attention_op = attention_op
|
1222 |
+
|
1223 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1224 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1225 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1226 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1227 |
+
|
1228 |
+
def __call__(
|
1229 |
+
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None
|
1230 |
+
):
|
1231 |
+
residual = hidden_states
|
1232 |
+
|
1233 |
+
if attn.spatial_norm is not None:
|
1234 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1235 |
+
|
1236 |
+
input_ndim = hidden_states.ndim
|
1237 |
+
|
1238 |
+
if input_ndim == 4:
|
1239 |
+
batch_size, channel, height, width = hidden_states.shape
|
1240 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1241 |
+
|
1242 |
+
batch_size, sequence_length, _ = (
|
1243 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1244 |
+
)
|
1245 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1246 |
+
|
1247 |
+
if attn.group_norm is not None:
|
1248 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1249 |
+
|
1250 |
+
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
|
1251 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1252 |
+
|
1253 |
+
if encoder_hidden_states is None:
|
1254 |
+
encoder_hidden_states = hidden_states
|
1255 |
+
elif attn.norm_cross:
|
1256 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1257 |
+
|
1258 |
+
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
|
1259 |
+
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)
|
1260 |
+
|
1261 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1262 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1263 |
+
|
1264 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
1265 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
1266 |
+
)
|
1267 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1268 |
+
|
1269 |
+
# linear proj
|
1270 |
+
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
|
1271 |
+
# dropout
|
1272 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1273 |
+
|
1274 |
+
if input_ndim == 4:
|
1275 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1276 |
+
|
1277 |
+
if attn.residual_connection:
|
1278 |
+
hidden_states = hidden_states + residual
|
1279 |
+
|
1280 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1281 |
+
|
1282 |
+
return hidden_states
|
1283 |
+
|
1284 |
+
|
1285 |
+
class LoRAAttnProcessor2_0(nn.Module):
|
1286 |
+
r"""
|
1287 |
+
Processor for implementing the LoRA attention mechanism using PyTorch 2.0's memory-efficient scaled dot-product
|
1288 |
+
attention.
|
1289 |
+
|
1290 |
+
Args:
|
1291 |
+
hidden_size (`int`):
|
1292 |
+
The hidden size of the attention layer.
|
1293 |
+
cross_attention_dim (`int`, *optional*):
|
1294 |
+
The number of channels in the `encoder_hidden_states`.
|
1295 |
+
rank (`int`, defaults to 4):
|
1296 |
+
The dimension of the LoRA update matrices.
|
1297 |
+
network_alpha (`int`, *optional*):
|
1298 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
1299 |
+
"""
|
1300 |
+
|
1301 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None):
|
1302 |
+
super().__init__()
|
1303 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
1304 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
1305 |
+
|
1306 |
+
self.hidden_size = hidden_size
|
1307 |
+
self.cross_attention_dim = cross_attention_dim
|
1308 |
+
self.rank = rank
|
1309 |
+
|
1310 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1311 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1312 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1313 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1314 |
+
|
1315 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
|
1316 |
+
residual = hidden_states
|
1317 |
+
|
1318 |
+
input_ndim = hidden_states.ndim
|
1319 |
+
|
1320 |
+
if input_ndim == 4:
|
1321 |
+
batch_size, channel, height, width = hidden_states.shape
|
1322 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1323 |
+
|
1324 |
+
batch_size, sequence_length, _ = (
|
1325 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1326 |
+
)
|
1327 |
+
inner_dim = hidden_states.shape[-1]
|
1328 |
+
|
1329 |
+
if attention_mask is not None:
|
1330 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1331 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
1332 |
+
# (batch, heads, source_length, target_length)
|
1333 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
1334 |
+
|
1335 |
+
if attn.group_norm is not None:
|
1336 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1337 |
+
|
1338 |
+
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
|
1339 |
+
|
1340 |
+
if encoder_hidden_states is None:
|
1341 |
+
encoder_hidden_states = hidden_states
|
1342 |
+
elif attn.norm_cross:
|
1343 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1344 |
+
|
1345 |
+
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
|
1346 |
+
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)
|
1347 |
+
|
1348 |
+
head_dim = inner_dim // attn.heads
|
1349 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1350 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1351 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1352 |
+
|
1353 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1354 |
+
hidden_states = F.scaled_dot_product_attention(
|
1355 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1356 |
+
)
|
1357 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1358 |
+
hidden_states = hidden_states.to(query.dtype)
|
1359 |
+
|
1360 |
+
# linear proj
|
1361 |
+
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
|
1362 |
+
# dropout
|
1363 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1364 |
+
|
1365 |
+
if input_ndim == 4:
|
1366 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1367 |
+
|
1368 |
+
if attn.residual_connection:
|
1369 |
+
hidden_states = hidden_states + residual
|
1370 |
+
|
1371 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1372 |
+
|
1373 |
+
return hidden_states
|
1374 |
+
|
1375 |
+
|
1376 |
+
class CustomDiffusionXFormersAttnProcessor(nn.Module):
|
1377 |
+
r"""
|
1378 |
+
Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
|
1379 |
+
|
1380 |
+
Args:
|
1381 |
+
train_kv (`bool`, defaults to `True`):
|
1382 |
+
Whether to newly train the key and value matrices corresponding to the text features.
|
1383 |
+
train_q_out (`bool`, defaults to `True`):
|
1384 |
+
Whether to newly train query matrices corresponding to the latent image features.
|
1385 |
+
hidden_size (`int`, *optional*, defaults to `None`):
|
1386 |
+
The hidden size of the attention layer.
|
1387 |
+
cross_attention_dim (`int`, *optional*, defaults to `None`):
|
1388 |
+
The number of channels in the `encoder_hidden_states`.
|
1389 |
+
out_bias (`bool`, defaults to `True`):
|
1390 |
+
Whether to include the bias parameter in `train_q_out`.
|
1391 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
1392 |
+
The dropout probability to use.
|
1393 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
1394 |
+
The base
|
1395 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
|
1396 |
+
as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
|
1397 |
+
"""
|
1398 |
+
|
1399 |
+
def __init__(
|
1400 |
+
self,
|
1401 |
+
train_kv=True,
|
1402 |
+
train_q_out=False,
|
1403 |
+
hidden_size=None,
|
1404 |
+
cross_attention_dim=None,
|
1405 |
+
out_bias=True,
|
1406 |
+
dropout=0.0,
|
1407 |
+
attention_op: Optional[Callable] = None,
|
1408 |
+
):
|
1409 |
+
super().__init__()
|
1410 |
+
self.train_kv = train_kv
|
1411 |
+
self.train_q_out = train_q_out
|
1412 |
+
|
1413 |
+
self.hidden_size = hidden_size
|
1414 |
+
self.cross_attention_dim = cross_attention_dim
|
1415 |
+
self.attention_op = attention_op
|
1416 |
+
|
1417 |
+
# `_custom_diffusion` id for easy serialization and loading.
|
1418 |
+
if self.train_kv:
|
1419 |
+
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
1420 |
+
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
1421 |
+
if self.train_q_out:
|
1422 |
+
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
|
1423 |
+
self.to_out_custom_diffusion = nn.ModuleList([])
|
1424 |
+
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
|
1425 |
+
self.to_out_custom_diffusion.append(nn.Dropout(dropout))
|
1426 |
+
|
1427 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
1428 |
+
batch_size, sequence_length, _ = (
|
1429 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1430 |
+
)
|
1431 |
+
|
1432 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1433 |
+
|
1434 |
+
if self.train_q_out:
|
1435 |
+
query = self.to_q_custom_diffusion(hidden_states)
|
1436 |
+
else:
|
1437 |
+
query = attn.to_q(hidden_states)
|
1438 |
+
|
1439 |
+
if encoder_hidden_states is None:
|
1440 |
+
crossattn = False
|
1441 |
+
encoder_hidden_states = hidden_states
|
1442 |
+
else:
|
1443 |
+
crossattn = True
|
1444 |
+
if attn.norm_cross:
|
1445 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1446 |
+
|
1447 |
+
if self.train_kv:
|
1448 |
+
key = self.to_k_custom_diffusion(encoder_hidden_states)
|
1449 |
+
value = self.to_v_custom_diffusion(encoder_hidden_states)
|
1450 |
+
else:
|
1451 |
+
key = attn.to_k(encoder_hidden_states)
|
1452 |
+
value = attn.to_v(encoder_hidden_states)
|
1453 |
+
|
1454 |
+
if crossattn:
|
1455 |
+
detach = torch.ones_like(key)
|
1456 |
+
detach[:, :1, :] = detach[:, :1, :] * 0.0
|
1457 |
+
key = detach * key + (1 - detach) * key.detach()
|
1458 |
+
value = detach * value + (1 - detach) * value.detach()
|
1459 |
+
|
1460 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1461 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1462 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1463 |
+
|
1464 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
1465 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
1466 |
+
)
|
1467 |
+
hidden_states = hidden_states.to(query.dtype)
|
1468 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1469 |
+
|
1470 |
+
if self.train_q_out:
|
1471 |
+
# linear proj
|
1472 |
+
hidden_states = self.to_out_custom_diffusion[0](hidden_states)
|
1473 |
+
# dropout
|
1474 |
+
hidden_states = self.to_out_custom_diffusion[1](hidden_states)
|
1475 |
+
else:
|
1476 |
+
# linear proj
|
1477 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1478 |
+
# dropout
|
1479 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1480 |
+
return hidden_states
|
1481 |
+
|
1482 |
+
|
1483 |
+
class SlicedAttnProcessor:
|
1484 |
+
r"""
|
1485 |
+
Processor for implementing sliced attention.
|
1486 |
+
|
1487 |
+
Args:
|
1488 |
+
slice_size (`int`, *optional*):
|
1489 |
+
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
|
1490 |
+
`attention_head_dim` must be a multiple of the `slice_size`.
|
1491 |
+
"""
|
1492 |
+
|
1493 |
+
def __init__(self, slice_size):
|
1494 |
+
self.slice_size = slice_size
|
1495 |
+
|
1496 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
1497 |
+
residual = hidden_states
|
1498 |
+
|
1499 |
+
input_ndim = hidden_states.ndim
|
1500 |
+
|
1501 |
+
if input_ndim == 4:
|
1502 |
+
batch_size, channel, height, width = hidden_states.shape
|
1503 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1504 |
+
|
1505 |
+
batch_size, sequence_length, _ = (
|
1506 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1507 |
+
)
|
1508 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1509 |
+
|
1510 |
+
if attn.group_norm is not None:
|
1511 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1512 |
+
|
1513 |
+
query = attn.to_q(hidden_states)
|
1514 |
+
dim = query.shape[-1]
|
1515 |
+
query = attn.head_to_batch_dim(query)
|
1516 |
+
|
1517 |
+
if encoder_hidden_states is None:
|
1518 |
+
encoder_hidden_states = hidden_states
|
1519 |
+
elif attn.norm_cross:
|
1520 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1521 |
+
|
1522 |
+
key = attn.to_k(encoder_hidden_states)
|
1523 |
+
value = attn.to_v(encoder_hidden_states)
|
1524 |
+
key = attn.head_to_batch_dim(key)
|
1525 |
+
value = attn.head_to_batch_dim(value)
|
1526 |
+
|
1527 |
+
batch_size_attention, query_tokens, _ = query.shape
|
1528 |
+
hidden_states = torch.zeros(
|
1529 |
+
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
|
1530 |
+
)
|
1531 |
+
|
1532 |
+
for i in range(batch_size_attention // self.slice_size):
|
1533 |
+
start_idx = i * self.slice_size
|
1534 |
+
end_idx = (i + 1) * self.slice_size
|
1535 |
+
|
1536 |
+
query_slice = query[start_idx:end_idx]
|
1537 |
+
key_slice = key[start_idx:end_idx]
|
1538 |
+
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
|
1539 |
+
|
1540 |
+
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
|
1541 |
+
|
1542 |
+
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
|
1543 |
+
|
1544 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
1545 |
+
|
1546 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1547 |
+
|
1548 |
+
# linear proj
|
1549 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1550 |
+
# dropout
|
1551 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1552 |
+
|
1553 |
+
if input_ndim == 4:
|
1554 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1555 |
+
|
1556 |
+
if attn.residual_connection:
|
1557 |
+
hidden_states = hidden_states + residual
|
1558 |
+
|
1559 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1560 |
+
|
1561 |
+
return hidden_states
|
1562 |
+
|
1563 |
+
|
1564 |
+
class SlicedAttnAddedKVProcessor:
|
1565 |
+
r"""
|
1566 |
+
Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.
|
1567 |
+
|
1568 |
+
Args:
|
1569 |
+
slice_size (`int`, *optional*):
|
1570 |
+
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
|
1571 |
+
`attention_head_dim` must be a multiple of the `slice_size`.
|
1572 |
+
"""
|
1573 |
+
|
1574 |
+
def __init__(self, slice_size):
|
1575 |
+
self.slice_size = slice_size
|
1576 |
+
|
1577 |
+
def __call__(self, attn: "Attention", hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
1578 |
+
residual = hidden_states
|
1579 |
+
|
1580 |
+
if attn.spatial_norm is not None:
|
1581 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1582 |
+
|
1583 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
1584 |
+
|
1585 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
1586 |
+
|
1587 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1588 |
+
|
1589 |
+
if encoder_hidden_states is None:
|
1590 |
+
encoder_hidden_states = hidden_states
|
1591 |
+
elif attn.norm_cross:
|
1592 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1593 |
+
|
1594 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1595 |
+
|
1596 |
+
query = attn.to_q(hidden_states)
|
1597 |
+
dim = query.shape[-1]
|
1598 |
+
query = attn.head_to_batch_dim(query)
|
1599 |
+
|
1600 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
1601 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
1602 |
+
|
1603 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
|
1604 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
|
1605 |
+
|
1606 |
+
if not attn.only_cross_attention:
|
1607 |
+
key = attn.to_k(hidden_states)
|
1608 |
+
value = attn.to_v(hidden_states)
|
1609 |
+
key = attn.head_to_batch_dim(key)
|
1610 |
+
value = attn.head_to_batch_dim(value)
|
1611 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
1612 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
1613 |
+
else:
|
1614 |
+
key = encoder_hidden_states_key_proj
|
1615 |
+
value = encoder_hidden_states_value_proj
|
1616 |
+
|
1617 |
+
batch_size_attention, query_tokens, _ = query.shape
|
1618 |
+
hidden_states = torch.zeros(
|
1619 |
+
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
|
1620 |
+
)
|
1621 |
+
|
1622 |
+
for i in range(batch_size_attention // self.slice_size):
|
1623 |
+
start_idx = i * self.slice_size
|
1624 |
+
end_idx = (i + 1) * self.slice_size
|
1625 |
+
|
1626 |
+
query_slice = query[start_idx:end_idx]
|
1627 |
+
key_slice = key[start_idx:end_idx]
|
1628 |
+
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
|
1629 |
+
|
1630 |
+
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
|
1631 |
+
|
1632 |
+
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
|
1633 |
+
|
1634 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
1635 |
+
|
1636 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1637 |
+
|
1638 |
+
# linear proj
|
1639 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1640 |
+
# dropout
|
1641 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1642 |
+
|
1643 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
1644 |
+
hidden_states = hidden_states + residual
|
1645 |
+
|
1646 |
+
return hidden_states
|
1647 |
+
|
1648 |
+
|
1649 |
+
AttentionProcessor = Union[
|
1650 |
+
AttnProcessor,
|
1651 |
+
AttnProcessor2_0,
|
1652 |
+
XFormersAttnProcessor,
|
1653 |
+
SlicedAttnProcessor,
|
1654 |
+
AttnAddedKVProcessor,
|
1655 |
+
SlicedAttnAddedKVProcessor,
|
1656 |
+
AttnAddedKVProcessor2_0,
|
1657 |
+
XFormersAttnAddedKVProcessor,
|
1658 |
+
LoRAAttnProcessor,
|
1659 |
+
LoRAXFormersAttnProcessor,
|
1660 |
+
LoRAAttnProcessor2_0,
|
1661 |
+
LoRAAttnAddedKVProcessor,
|
1662 |
+
CustomDiffusionAttnProcessor,
|
1663 |
+
CustomDiffusionXFormersAttnProcessor,
|
1664 |
+
]
|
1665 |
+
|
1666 |
+
|
1667 |
+
class SpatialNorm(nn.Module):
|
1668 |
+
"""
|
1669 |
+
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002
|
1670 |
+
"""
|
1671 |
+
|
1672 |
+
def __init__(
|
1673 |
+
self,
|
1674 |
+
f_channels,
|
1675 |
+
zq_channels,
|
1676 |
+
):
|
1677 |
+
super().__init__()
|
1678 |
+
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
|
1679 |
+
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
|
1680 |
+
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
|
1681 |
+
|
1682 |
+
def forward(self, f, zq):
|
1683 |
+
f_size = f.shape[-2:]
|
1684 |
+
zq = F.interpolate(zq, size=f_size, mode="nearest")
|
1685 |
+
norm_f = self.norm_layer(f)
|
1686 |
+
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
|
1687 |
+
return new_f
|
models/dual_transformer_2d.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Optional
|
15 |
+
|
16 |
+
from torch import nn
|
17 |
+
|
18 |
+
from models.transformer_2d import Transformer2DModel, Transformer2DModelOutput
|
19 |
+
|
20 |
+
|
21 |
+
class DualTransformer2DModel(nn.Module):
|
22 |
+
"""
|
23 |
+
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
|
24 |
+
|
25 |
+
Parameters:
|
26 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
27 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
28 |
+
in_channels (`int`, *optional*):
|
29 |
+
Pass if the input is continuous. The number of channels in the input and output.
|
30 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
31 |
+
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
32 |
+
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
|
33 |
+
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
|
34 |
+
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
|
35 |
+
`ImagePositionalEmbeddings`.
|
36 |
+
num_vector_embeds (`int`, *optional*):
|
37 |
+
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
|
38 |
+
Includes the class for the masked latent pixel.
|
39 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
40 |
+
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
|
41 |
+
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
|
42 |
+
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
|
43 |
+
up to but not more than steps than `num_embeds_ada_norm`.
|
44 |
+
attention_bias (`bool`, *optional*):
|
45 |
+
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
num_attention_heads: int = 16,
|
51 |
+
attention_head_dim: int = 88,
|
52 |
+
in_channels: Optional[int] = None,
|
53 |
+
num_layers: int = 1,
|
54 |
+
dropout: float = 0.0,
|
55 |
+
norm_num_groups: int = 32,
|
56 |
+
cross_attention_dim: Optional[int] = None,
|
57 |
+
attention_bias: bool = False,
|
58 |
+
sample_size: Optional[int] = None,
|
59 |
+
num_vector_embeds: Optional[int] = None,
|
60 |
+
activation_fn: str = "geglu",
|
61 |
+
num_embeds_ada_norm: Optional[int] = None,
|
62 |
+
):
|
63 |
+
super().__init__()
|
64 |
+
self.transformers = nn.ModuleList(
|
65 |
+
[
|
66 |
+
Transformer2DModel(
|
67 |
+
num_attention_heads=num_attention_heads,
|
68 |
+
attention_head_dim=attention_head_dim,
|
69 |
+
in_channels=in_channels,
|
70 |
+
num_layers=num_layers,
|
71 |
+
dropout=dropout,
|
72 |
+
norm_num_groups=norm_num_groups,
|
73 |
+
cross_attention_dim=cross_attention_dim,
|
74 |
+
attention_bias=attention_bias,
|
75 |
+
sample_size=sample_size,
|
76 |
+
num_vector_embeds=num_vector_embeds,
|
77 |
+
activation_fn=activation_fn,
|
78 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
79 |
+
)
|
80 |
+
for _ in range(2)
|
81 |
+
]
|
82 |
+
)
|
83 |
+
|
84 |
+
# Variables that can be set by a pipeline:
|
85 |
+
|
86 |
+
# The ratio of transformer1 to transformer2's output states to be combined during inference
|
87 |
+
self.mix_ratio = 0.5
|
88 |
+
|
89 |
+
# The shape of `encoder_hidden_states` is expected to be
|
90 |
+
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
|
91 |
+
self.condition_lengths = [77, 257]
|
92 |
+
|
93 |
+
# Which transformer to use to encode which condition.
|
94 |
+
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
|
95 |
+
self.transformer_index_for_condition = [1, 0]
|
96 |
+
|
97 |
+
def forward(
|
98 |
+
self,
|
99 |
+
hidden_states,
|
100 |
+
encoder_hidden_states,
|
101 |
+
timestep=None,
|
102 |
+
attention_mask=None,
|
103 |
+
cross_attention_kwargs=None,
|
104 |
+
return_dict: bool = True,
|
105 |
+
):
|
106 |
+
"""
|
107 |
+
Args:
|
108 |
+
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
109 |
+
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
|
110 |
+
hidden_states
|
111 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
|
112 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
113 |
+
self-attention.
|
114 |
+
timestep ( `torch.long`, *optional*):
|
115 |
+
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
116 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
117 |
+
Optional attention mask to be applied in Attention
|
118 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
119 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`:
|
123 |
+
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
124 |
+
returning a tuple, the first element is the sample tensor.
|
125 |
+
"""
|
126 |
+
input_states = hidden_states
|
127 |
+
|
128 |
+
encoded_states = []
|
129 |
+
tokens_start = 0
|
130 |
+
# attention_mask is not used yet
|
131 |
+
for i in range(2):
|
132 |
+
# for each of the two transformers, pass the corresponding condition tokens
|
133 |
+
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
|
134 |
+
transformer_index = self.transformer_index_for_condition[i]
|
135 |
+
encoded_state = self.transformers[transformer_index](
|
136 |
+
input_states,
|
137 |
+
encoder_hidden_states=condition_state,
|
138 |
+
timestep=timestep,
|
139 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
140 |
+
return_dict=False,
|
141 |
+
)[0]
|
142 |
+
encoded_states.append(encoded_state - input_states)
|
143 |
+
tokens_start += self.condition_lengths[i]
|
144 |
+
|
145 |
+
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
|
146 |
+
output_states = output_states + input_states
|
147 |
+
|
148 |
+
if not return_dict:
|
149 |
+
return (output_states,)
|
150 |
+
|
151 |
+
return Transformer2DModelOutput(sample=output_states)
|
models/region_diffusion.py
CHANGED
@@ -84,17 +84,19 @@ class RegionDiffusion(nn.Module):
|
|
84 |
return text_embeddings
|
85 |
|
86 |
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5,
|
87 |
-
latents=None, use_guidance=False, text_format_dict={}, inject_selfattn=0,
|
88 |
|
89 |
if latents is None:
|
90 |
latents = torch.randn(
|
91 |
(1, self.unet.in_channels, height // 8, width // 8), device=self.device)
|
92 |
|
93 |
-
if inject_selfattn > 0
|
94 |
latents_reference = latents.clone().detach()
|
95 |
self.scheduler.set_timesteps(num_inference_steps)
|
96 |
n_styles = text_embeddings.shape[0]-1
|
|
|
97 |
assert n_styles == len(self.masks)
|
|
|
98 |
with torch.autocast('cuda'):
|
99 |
for i, t in enumerate(self.scheduler.timesteps):
|
100 |
|
@@ -102,34 +104,56 @@ class RegionDiffusion(nn.Module):
|
|
102 |
with torch.no_grad():
|
103 |
# tokens without any attributes
|
104 |
feat_inject_step = t > (1-inject_selfattn) * 1000
|
105 |
-
background_inject_step = i == int(inject_background * len(self.scheduler.timesteps)) and inject_background > 0
|
106 |
noise_pred_uncond_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[:1],
|
107 |
-
text_format_dict={})['sample']
|
|
|
|
|
|
|
108 |
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[-1:],
|
109 |
-
text_format_dict=text_format_dict)['sample']
|
|
|
|
|
110 |
if inject_selfattn > 0 or inject_background > 0:
|
111 |
noise_pred_uncond_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[:1],
|
112 |
-
text_format_dict={})['sample']
|
|
|
113 |
self.register_selfattn_hooks(feat_inject_step)
|
114 |
noise_pred_text_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[-1:],
|
115 |
-
|
|
|
116 |
self.remove_selfattn_hooks()
|
117 |
noise_pred_uncond = noise_pred_uncond_cur * self.masks[-1]
|
118 |
noise_pred_text = noise_pred_text_cur * self.masks[-1]
|
119 |
# tokens with attributes
|
120 |
for style_i, mask in enumerate(self.masks[:-1]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
self.register_replacement_hooks(feat_inject_step)
|
122 |
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
|
123 |
-
text_format_dict={})['sample']
|
|
|
124 |
self.remove_replacement_hooks()
|
125 |
noise_pred_uncond = noise_pred_uncond + noise_pred_uncond_cur*mask
|
126 |
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask
|
127 |
-
|
128 |
-
# perform
|
129 |
noise_pred = noise_pred_uncond + guidance_scale * \
|
130 |
(noise_pred_text - noise_pred_uncond)
|
131 |
|
132 |
-
if inject_selfattn > 0
|
133 |
noise_pred_refer = noise_pred_uncond_refer + guidance_scale * \
|
134 |
(noise_pred_text_refer - noise_pred_uncond_refer)
|
135 |
|
@@ -154,21 +178,25 @@ class RegionDiffusion(nn.Module):
|
|
154 |
latents_inp = 1 / 0.18215 * latents_0
|
155 |
imgs = self.vae.decode(latents_inp).sample
|
156 |
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
|
|
|
|
|
|
|
|
|
|
157 |
loss_total = 0.
|
158 |
for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']):
|
|
|
|
|
159 |
avg_rgb = (
|
160 |
imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum()
|
161 |
loss = self.color_loss(
|
162 |
avg_rgb, rgb_val[:, :, 0, 0])*100
|
|
|
163 |
loss_total += loss
|
164 |
loss_total.backward()
|
165 |
latents = (
|
166 |
-
latents - latents.grad * text_format_dict['color_guidance_weight'] *
|
167 |
|
168 |
-
# apply background injection
|
169 |
-
if background_inject_step:
|
170 |
-
latents = latents_reference * self.masks[-1] + latents * \
|
171 |
-
(1-self.masks[-1])
|
172 |
return latents
|
173 |
|
174 |
def predict_x0(self, x_t, eps_t, t):
|
@@ -244,7 +272,7 @@ class RegionDiffusion(nn.Module):
|
|
244 |
return latents
|
245 |
|
246 |
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
|
247 |
-
guidance_scale=7.5, latents=None, text_format_dict={}, use_guidance=False, inject_selfattn=0,
|
248 |
|
249 |
if isinstance(prompts, str):
|
250 |
prompts = [prompts]
|
@@ -260,7 +288,7 @@ class RegionDiffusion(nn.Module):
|
|
260 |
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents,
|
261 |
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,
|
262 |
use_guidance=use_guidance, text_format_dict=text_format_dict,
|
263 |
-
inject_selfattn=inject_selfattn,
|
264 |
# Img latents -> imgs
|
265 |
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
266 |
|
@@ -334,6 +362,8 @@ class RegionDiffusion(nn.Module):
|
|
334 |
"""
|
335 |
# out[0] - final output of residual layer
|
336 |
# out[1] - residual hidden feature
|
|
|
|
|
337 |
assert out[1].shape[-1] == 16
|
338 |
activations[name] = out[1].detach()
|
339 |
attention_dict = collections.defaultdict(list)
|
@@ -459,3 +489,33 @@ class RegionDiffusion(nn.Module):
|
|
459 |
def remove_selfattn_hooks(self):
|
460 |
for hook in self.selfattn_forward_hooks:
|
461 |
hook.remove()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
return text_embeddings
|
85 |
|
86 |
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5,
|
87 |
+
latents=None, use_guidance=False, text_format_dict={}, inject_selfattn=0, bg_aug_end=1000):
|
88 |
|
89 |
if latents is None:
|
90 |
latents = torch.randn(
|
91 |
(1, self.unet.in_channels, height // 8, width // 8), device=self.device)
|
92 |
|
93 |
+
if inject_selfattn > 0:
|
94 |
latents_reference = latents.clone().detach()
|
95 |
self.scheduler.set_timesteps(num_inference_steps)
|
96 |
n_styles = text_embeddings.shape[0]-1
|
97 |
+
print(n_styles, len(self.masks))
|
98 |
assert n_styles == len(self.masks)
|
99 |
+
|
100 |
with torch.autocast('cuda'):
|
101 |
for i, t in enumerate(self.scheduler.timesteps):
|
102 |
|
|
|
104 |
with torch.no_grad():
|
105 |
# tokens without any attributes
|
106 |
feat_inject_step = t > (1-inject_selfattn) * 1000
|
|
|
107 |
noise_pred_uncond_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[:1],
|
108 |
+
# text_format_dict={})['sample']
|
109 |
+
)['sample']
|
110 |
+
# tokens without any style or footnote
|
111 |
+
self.register_fontsize_hooks(text_format_dict)
|
112 |
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[-1:],
|
113 |
+
# text_format_dict=text_format_dict)['sample']
|
114 |
+
)['sample']
|
115 |
+
self.remove_fontsize_hooks()
|
116 |
if inject_selfattn > 0 or inject_background > 0:
|
117 |
noise_pred_uncond_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[:1],
|
118 |
+
# text_format_dict={})['sample']
|
119 |
+
)['sample']
|
120 |
self.register_selfattn_hooks(feat_inject_step)
|
121 |
noise_pred_text_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[-1:],
|
122 |
+
# text_format_dict={})['sample']
|
123 |
+
)['sample']
|
124 |
self.remove_selfattn_hooks()
|
125 |
noise_pred_uncond = noise_pred_uncond_cur * self.masks[-1]
|
126 |
noise_pred_text = noise_pred_text_cur * self.masks[-1]
|
127 |
# tokens with attributes
|
128 |
for style_i, mask in enumerate(self.masks[:-1]):
|
129 |
+
if t > bg_aug_end:
|
130 |
+
rand_rgb = torch.rand([1, 3, 1, 1]).cuda()
|
131 |
+
black_background = torch.ones(
|
132 |
+
[1, 3, height, width]).cuda()*rand_rgb
|
133 |
+
black_latent = self.encode_imgs(
|
134 |
+
black_background)
|
135 |
+
noise = torch.randn_like(black_latent)
|
136 |
+
black_latent_noisy = self.scheduler.add_noise(
|
137 |
+
black_latent, noise, t)
|
138 |
+
masked_latent = (
|
139 |
+
mask > 0.001) * latents + (mask < 0.001) * black_latent_noisy
|
140 |
+
noise_pred_uncond_cur = self.unet(masked_latent, t, encoder_hidden_states=text_embeddings[:1],
|
141 |
+
text_format_dict={})['sample']
|
142 |
+
else:
|
143 |
+
masked_latent = latents
|
144 |
self.register_replacement_hooks(feat_inject_step)
|
145 |
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
|
146 |
+
# text_format_dict={})['sample']
|
147 |
+
)['sample']
|
148 |
self.remove_replacement_hooks()
|
149 |
noise_pred_uncond = noise_pred_uncond + noise_pred_uncond_cur*mask
|
150 |
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask
|
151 |
+
|
152 |
+
# perform guidance
|
153 |
noise_pred = noise_pred_uncond + guidance_scale * \
|
154 |
(noise_pred_text - noise_pred_uncond)
|
155 |
|
156 |
+
if inject_selfattn > 0:
|
157 |
noise_pred_refer = noise_pred_uncond_refer + guidance_scale * \
|
158 |
(noise_pred_text_refer - noise_pred_uncond_refer)
|
159 |
|
|
|
178 |
latents_inp = 1 / 0.18215 * latents_0
|
179 |
imgs = self.vae.decode(latents_inp).sample
|
180 |
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
181 |
+
# save_path = 'results/font_color/20230425/church_process/orange/'
|
182 |
+
# os.makedirs(save_path, exist_ok=True)
|
183 |
+
# torchvision.utils.save_image(
|
184 |
+
# imgs, os.path.join(save_path, 'step%d.png' % t))
|
185 |
+
# loss = (((imgs - text_format_dict['target_RGB'])*text_format_dict['color_obj_atten'][:, 0])**2).mean()*100
|
186 |
loss_total = 0.
|
187 |
for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']):
|
188 |
+
# loss = self.color_loss(
|
189 |
+
# imgs*attn_map[:, 0], rgb_val*attn_map[:, 0])*100
|
190 |
avg_rgb = (
|
191 |
imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum()
|
192 |
loss = self.color_loss(
|
193 |
avg_rgb, rgb_val[:, :, 0, 0])*100
|
194 |
+
# print(loss)
|
195 |
loss_total += loss
|
196 |
loss_total.backward()
|
197 |
latents = (
|
198 |
+
latents - latents.grad * text_format_dict['color_guidance_weight'] * self.masks[0]).detach().clone()
|
199 |
|
|
|
|
|
|
|
|
|
200 |
return latents
|
201 |
|
202 |
def predict_x0(self, x_t, eps_t, t):
|
|
|
272 |
return latents
|
273 |
|
274 |
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
|
275 |
+
guidance_scale=7.5, latents=None, text_format_dict={}, use_guidance=False, inject_selfattn=0, bg_aug_end=1000):
|
276 |
|
277 |
if isinstance(prompts, str):
|
278 |
prompts = [prompts]
|
|
|
288 |
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents,
|
289 |
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,
|
290 |
use_guidance=use_guidance, text_format_dict=text_format_dict,
|
291 |
+
inject_selfattn=inject_selfattn, bg_aug_end=bg_aug_end) # [1, 4, 64, 64]
|
292 |
# Img latents -> imgs
|
293 |
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
294 |
|
|
|
362 |
"""
|
363 |
# out[0] - final output of residual layer
|
364 |
# out[1] - residual hidden feature
|
365 |
+
# import ipdb
|
366 |
+
# ipdb.set_trace()
|
367 |
assert out[1].shape[-1] == 16
|
368 |
activations[name] = out[1].detach()
|
369 |
attention_dict = collections.defaultdict(list)
|
|
|
489 |
def remove_selfattn_hooks(self):
|
490 |
for hook in self.selfattn_forward_hooks:
|
491 |
hook.remove()
|
492 |
+
|
493 |
+
def register_fontsize_hooks(self, text_format_dict={}):
|
494 |
+
r"""Function for registering hooks to replace self attention.
|
495 |
+
"""
|
496 |
+
self.forward_fontsize_hooks = []
|
497 |
+
|
498 |
+
def adjust_attn_weights(name, module, args):
|
499 |
+
r"""
|
500 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
501 |
+
"""
|
502 |
+
if 'attn2' in name:
|
503 |
+
modified_args = (args[0], None, attn_weights)
|
504 |
+
return modified_args
|
505 |
+
|
506 |
+
if text_format_dict['word_pos'] is not None and text_format_dict['font_size'] is not None:
|
507 |
+
attn_weights = {'word_pos': text_format_dict['word_pos'], 'font_size': text_format_dict['font_size']}
|
508 |
+
else:
|
509 |
+
attn_weights = None
|
510 |
+
|
511 |
+
for name, module in self.unet.named_modules():
|
512 |
+
leaf_name = name.split('.')[-1]
|
513 |
+
if 'attn' in leaf_name and attn_weights is not None:
|
514 |
+
# Register hook to obtain outputs at every attention layer.
|
515 |
+
self.forward_fontsize_hooks.append(module.register_forward_pre_hook(
|
516 |
+
partial(adjust_attn_weights, name)
|
517 |
+
))
|
518 |
+
|
519 |
+
def remove_fontsize_hooks(self):
|
520 |
+
for hook in self.forward_fontsize_hooks:
|
521 |
+
hook.remove()
|
models/region_diffusion_xl.py
ADDED
@@ -0,0 +1,1138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
8 |
+
|
9 |
+
from diffusers.image_processor import VaeImageProcessor
|
10 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
11 |
+
# from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.models import AutoencoderKL
|
13 |
+
|
14 |
+
from diffusers.models.attention_processor import (
|
15 |
+
AttnProcessor2_0,
|
16 |
+
LoRAAttnProcessor2_0,
|
17 |
+
LoRAXFormersAttnProcessor,
|
18 |
+
XFormersAttnProcessor,
|
19 |
+
)
|
20 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
21 |
+
from diffusers.utils import (
|
22 |
+
is_accelerate_available,
|
23 |
+
is_accelerate_version,
|
24 |
+
logging,
|
25 |
+
randn_tensor,
|
26 |
+
replace_example_docstring,
|
27 |
+
)
|
28 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
29 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
30 |
+
|
31 |
+
### cutomized modules
|
32 |
+
import collections
|
33 |
+
from functools import partial
|
34 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
35 |
+
|
36 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
37 |
+
from utils.attention_utils import CrossAttentionLayers_XL
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
+
|
41 |
+
|
42 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
43 |
+
"""
|
44 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
45 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
46 |
+
"""
|
47 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
48 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
49 |
+
# rescale the results from guidance (fixes overexposure)
|
50 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
51 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
52 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
53 |
+
return noise_cfg
|
54 |
+
|
55 |
+
|
56 |
+
class RegionDiffusionXL(DiffusionPipeline, FromSingleFileMixin):
|
57 |
+
r"""
|
58 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
59 |
+
|
60 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
61 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
62 |
+
|
63 |
+
In addition the pipeline inherits the following loading methods:
|
64 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
65 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
66 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
67 |
+
|
68 |
+
as well as the following saving methods:
|
69 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
70 |
+
|
71 |
+
Args:
|
72 |
+
vae ([`AutoencoderKL`]):
|
73 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
74 |
+
text_encoder ([`CLIPTextModel`]):
|
75 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
76 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
77 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
78 |
+
tokenizer (`CLIPTokenizer`):
|
79 |
+
Tokenizer of class
|
80 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
81 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
82 |
+
scheduler ([`SchedulerMixin`]):
|
83 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
84 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
load_path: str = "stabilityai/stable-diffusion-xl-base-1.0",
|
90 |
+
device: str = "cuda",
|
91 |
+
force_zeros_for_empty_prompt: bool = True,
|
92 |
+
):
|
93 |
+
super().__init__()
|
94 |
+
|
95 |
+
# self.register_modules(
|
96 |
+
# vae=vae,
|
97 |
+
# text_encoder=text_encoder,
|
98 |
+
# text_encoder_2=text_encoder_2,
|
99 |
+
# tokenizer=tokenizer,
|
100 |
+
# tokenizer_2=tokenizer_2,
|
101 |
+
# unet=unet,
|
102 |
+
# scheduler=scheduler,
|
103 |
+
# )
|
104 |
+
|
105 |
+
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
106 |
+
self.vae = AutoencoderKL.from_pretrained(load_path, subfolder="vae", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
|
107 |
+
|
108 |
+
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
|
109 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(load_path, subfolder='tokenizer')
|
110 |
+
self.tokenizer_2 = CLIPTokenizer.from_pretrained(load_path, subfolder='tokenizer_2')
|
111 |
+
self.text_encoder = CLIPTextModel.from_pretrained(load_path, subfolder='text_encoder', torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
|
112 |
+
self.text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(load_path, subfolder='text_encoder_2', torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
|
113 |
+
|
114 |
+
# 3. The UNet model for generating the latents.
|
115 |
+
self.unet = UNet2DConditionModel.from_pretrained(load_path, subfolder="unet", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to(device)
|
116 |
+
|
117 |
+
# 4. Scheduler.
|
118 |
+
self.scheduler = EulerDiscreteScheduler.from_pretrained(load_path, subfolder="scheduler")
|
119 |
+
|
120 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
121 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
122 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
123 |
+
self.default_sample_size = self.unet.config.sample_size
|
124 |
+
|
125 |
+
self.watermark = StableDiffusionXLWatermarker()
|
126 |
+
|
127 |
+
self.device_type = device
|
128 |
+
|
129 |
+
self.masks = []
|
130 |
+
self.attention_maps = None
|
131 |
+
self.selfattn_maps = None
|
132 |
+
self.crossattn_maps = None
|
133 |
+
self.color_loss = torch.nn.functional.mse_loss
|
134 |
+
self.forward_hooks = []
|
135 |
+
self.forward_replacement_hooks = []
|
136 |
+
|
137 |
+
# Overwriting the method from diffusers.pipelines.diffusion_pipeline.DiffusionPipeline
|
138 |
+
@property
|
139 |
+
def device(self) -> torch.device:
|
140 |
+
r"""
|
141 |
+
Returns:
|
142 |
+
`torch.device`: The torch device on which the pipeline is located.
|
143 |
+
"""
|
144 |
+
|
145 |
+
return torch.device(self.device_type)
|
146 |
+
|
147 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
148 |
+
def enable_vae_slicing(self):
|
149 |
+
r"""
|
150 |
+
Enable sliced VAE decoding.
|
151 |
+
|
152 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
153 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
154 |
+
"""
|
155 |
+
self.vae.enable_slicing()
|
156 |
+
|
157 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
158 |
+
def disable_vae_slicing(self):
|
159 |
+
r"""
|
160 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
161 |
+
computing decoding in one step.
|
162 |
+
"""
|
163 |
+
self.vae.disable_slicing()
|
164 |
+
|
165 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
166 |
+
def enable_vae_tiling(self):
|
167 |
+
r"""
|
168 |
+
Enable tiled VAE decoding.
|
169 |
+
|
170 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
171 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
172 |
+
"""
|
173 |
+
self.vae.enable_tiling()
|
174 |
+
|
175 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
176 |
+
def disable_vae_tiling(self):
|
177 |
+
r"""
|
178 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
179 |
+
computing decoding in one step.
|
180 |
+
"""
|
181 |
+
self.vae.disable_tiling()
|
182 |
+
|
183 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
184 |
+
r"""
|
185 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
186 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
187 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
188 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
189 |
+
`enable_model_cpu_offload`, but performance is lower.
|
190 |
+
"""
|
191 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
192 |
+
from accelerate import cpu_offload
|
193 |
+
else:
|
194 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
195 |
+
|
196 |
+
device = torch.device(f"cuda:{gpu_id}")
|
197 |
+
|
198 |
+
if self.device.type != "cpu":
|
199 |
+
self.to("cpu", silence_dtype_warnings=True)
|
200 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
201 |
+
|
202 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.text_encoder_2, self.vae]:
|
203 |
+
cpu_offload(cpu_offloaded_model, device)
|
204 |
+
|
205 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
206 |
+
r"""
|
207 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
208 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
209 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
210 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
211 |
+
"""
|
212 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
213 |
+
from accelerate import cpu_offload_with_hook
|
214 |
+
else:
|
215 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
216 |
+
|
217 |
+
device = torch.device(f"cuda:{gpu_id}")
|
218 |
+
|
219 |
+
if self.device.type != "cpu":
|
220 |
+
self.to("cpu", silence_dtype_warnings=True)
|
221 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
222 |
+
|
223 |
+
model_sequence = (
|
224 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
225 |
+
)
|
226 |
+
model_sequence.extend([self.unet, self.vae])
|
227 |
+
|
228 |
+
hook = None
|
229 |
+
for cpu_offloaded_model in model_sequence:
|
230 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
231 |
+
|
232 |
+
# We'll offload the last model manually.
|
233 |
+
self.final_offload_hook = hook
|
234 |
+
|
235 |
+
@property
|
236 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
237 |
+
def _execution_device(self):
|
238 |
+
r"""
|
239 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
240 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
241 |
+
hooks.
|
242 |
+
"""
|
243 |
+
if not hasattr(self.unet, "_hf_hook"):
|
244 |
+
return self.device
|
245 |
+
for module in self.unet.modules():
|
246 |
+
if (
|
247 |
+
hasattr(module, "_hf_hook")
|
248 |
+
and hasattr(module._hf_hook, "execution_device")
|
249 |
+
and module._hf_hook.execution_device is not None
|
250 |
+
):
|
251 |
+
return torch.device(module._hf_hook.execution_device)
|
252 |
+
return self.device
|
253 |
+
|
254 |
+
def encode_prompt(
|
255 |
+
self,
|
256 |
+
prompt,
|
257 |
+
device: Optional[torch.device] = None,
|
258 |
+
num_images_per_prompt: int = 1,
|
259 |
+
do_classifier_free_guidance: bool = True,
|
260 |
+
negative_prompt=None,
|
261 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
262 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
263 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
264 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
265 |
+
lora_scale: Optional[float] = None,
|
266 |
+
):
|
267 |
+
r"""
|
268 |
+
Encodes the prompt into text encoder hidden states.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
prompt (`str` or `List[str]`, *optional*):
|
272 |
+
prompt to be encoded
|
273 |
+
device: (`torch.device`):
|
274 |
+
torch device
|
275 |
+
num_images_per_prompt (`int`):
|
276 |
+
number of images that should be generated per prompt
|
277 |
+
do_classifier_free_guidance (`bool`):
|
278 |
+
whether to use classifier free guidance or not
|
279 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
280 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
281 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
282 |
+
less than `1`).
|
283 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
284 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
285 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
286 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
287 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
288 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
289 |
+
argument.
|
290 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
291 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
292 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
293 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
294 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
295 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
296 |
+
input argument.
|
297 |
+
lora_scale (`float`, *optional*):
|
298 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
299 |
+
"""
|
300 |
+
device = device or self._execution_device
|
301 |
+
|
302 |
+
# set lora scale so that monkey patched LoRA
|
303 |
+
# function of text encoder can correctly access it
|
304 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
305 |
+
self._lora_scale = lora_scale
|
306 |
+
|
307 |
+
if prompt is not None and isinstance(prompt, str):
|
308 |
+
batch_size = 1
|
309 |
+
elif prompt is not None and isinstance(prompt, list):
|
310 |
+
batch_size = len(prompt)
|
311 |
+
batch_size_neg = len(negative_prompt)
|
312 |
+
else:
|
313 |
+
batch_size = prompt_embeds.shape[0]
|
314 |
+
|
315 |
+
# Define tokenizers and text encoders
|
316 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
317 |
+
text_encoders = (
|
318 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
319 |
+
)
|
320 |
+
|
321 |
+
if prompt_embeds is None:
|
322 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
323 |
+
prompt_embeds_list = []
|
324 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
325 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
326 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
327 |
+
|
328 |
+
text_inputs = tokenizer(
|
329 |
+
prompt,
|
330 |
+
padding="max_length",
|
331 |
+
max_length=tokenizer.model_max_length,
|
332 |
+
truncation=True,
|
333 |
+
return_tensors="pt",
|
334 |
+
)
|
335 |
+
text_input_ids = text_inputs.input_ids
|
336 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
337 |
+
|
338 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
339 |
+
text_input_ids, untruncated_ids
|
340 |
+
):
|
341 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
342 |
+
logger.warning(
|
343 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
344 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
345 |
+
)
|
346 |
+
|
347 |
+
prompt_embeds = text_encoder(
|
348 |
+
text_input_ids.to(device),
|
349 |
+
output_hidden_states=True,
|
350 |
+
)
|
351 |
+
|
352 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
353 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
354 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
355 |
+
|
356 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
357 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
358 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
359 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
360 |
+
|
361 |
+
prompt_embeds_list.append(prompt_embeds)
|
362 |
+
|
363 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
364 |
+
|
365 |
+
# get unconditional embeddings for classifier free guidance
|
366 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
367 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
368 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
369 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
370 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
371 |
+
negative_prompt = negative_prompt or ""
|
372 |
+
uncond_tokens: List[str]
|
373 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
374 |
+
raise TypeError(
|
375 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
376 |
+
f" {type(prompt)}."
|
377 |
+
)
|
378 |
+
elif isinstance(negative_prompt, str):
|
379 |
+
uncond_tokens = [negative_prompt]
|
380 |
+
# elif batch_size != len(negative_prompt):
|
381 |
+
# raise ValueError(
|
382 |
+
# f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
383 |
+
# f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
384 |
+
# " the batch size of `prompt`."
|
385 |
+
# )
|
386 |
+
else:
|
387 |
+
uncond_tokens = negative_prompt
|
388 |
+
|
389 |
+
negative_prompt_embeds_list = []
|
390 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
391 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
392 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
393 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
394 |
+
|
395 |
+
max_length = prompt_embeds.shape[1]
|
396 |
+
uncond_input = tokenizer(
|
397 |
+
uncond_tokens,
|
398 |
+
padding="max_length",
|
399 |
+
max_length=max_length,
|
400 |
+
truncation=True,
|
401 |
+
return_tensors="pt",
|
402 |
+
)
|
403 |
+
|
404 |
+
negative_prompt_embeds = text_encoder(
|
405 |
+
uncond_input.input_ids.to(device),
|
406 |
+
output_hidden_states=True,
|
407 |
+
)
|
408 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
409 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
410 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
411 |
+
|
412 |
+
if do_classifier_free_guidance:
|
413 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
414 |
+
seq_len = negative_prompt_embeds.shape[1]
|
415 |
+
|
416 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
417 |
+
|
418 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
419 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
420 |
+
batch_size_neg * num_images_per_prompt, seq_len, -1
|
421 |
+
)
|
422 |
+
|
423 |
+
# For classifier free guidance, we need to do two forward passes.
|
424 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
425 |
+
# to avoid doing two forward passes
|
426 |
+
|
427 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
428 |
+
|
429 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
430 |
+
|
431 |
+
bs_embed = pooled_prompt_embeds.shape[0]
|
432 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
433 |
+
bs_embed * num_images_per_prompt, -1
|
434 |
+
)
|
435 |
+
bs_embed = negative_pooled_prompt_embeds.shape[0]
|
436 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
437 |
+
bs_embed * num_images_per_prompt, -1
|
438 |
+
)
|
439 |
+
|
440 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
441 |
+
|
442 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
443 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
444 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
445 |
+
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
446 |
+
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
|
447 |
+
# and should be between [0, 1]
|
448 |
+
|
449 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
450 |
+
extra_step_kwargs = {}
|
451 |
+
if accepts_eta:
|
452 |
+
extra_step_kwargs["eta"] = eta
|
453 |
+
|
454 |
+
# check if the scheduler accepts generator
|
455 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
456 |
+
if accepts_generator:
|
457 |
+
extra_step_kwargs["generator"] = generator
|
458 |
+
return extra_step_kwargs
|
459 |
+
|
460 |
+
def check_inputs(
|
461 |
+
self,
|
462 |
+
prompt,
|
463 |
+
height,
|
464 |
+
width,
|
465 |
+
callback_steps,
|
466 |
+
negative_prompt=None,
|
467 |
+
prompt_embeds=None,
|
468 |
+
negative_prompt_embeds=None,
|
469 |
+
pooled_prompt_embeds=None,
|
470 |
+
negative_pooled_prompt_embeds=None,
|
471 |
+
):
|
472 |
+
if height % 8 != 0 or width % 8 != 0:
|
473 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
474 |
+
|
475 |
+
if (callback_steps is None) or (
|
476 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
477 |
+
):
|
478 |
+
raise ValueError(
|
479 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
480 |
+
f" {type(callback_steps)}."
|
481 |
+
)
|
482 |
+
|
483 |
+
if prompt is not None and prompt_embeds is not None:
|
484 |
+
raise ValueError(
|
485 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
486 |
+
" only forward one of the two."
|
487 |
+
)
|
488 |
+
elif prompt is None and prompt_embeds is None:
|
489 |
+
raise ValueError(
|
490 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
491 |
+
)
|
492 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
493 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
494 |
+
|
495 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
496 |
+
raise ValueError(
|
497 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
498 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
499 |
+
)
|
500 |
+
|
501 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
502 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
503 |
+
raise ValueError(
|
504 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
505 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
506 |
+
f" {negative_prompt_embeds.shape}."
|
507 |
+
)
|
508 |
+
|
509 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
510 |
+
raise ValueError(
|
511 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
512 |
+
)
|
513 |
+
|
514 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
515 |
+
raise ValueError(
|
516 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
517 |
+
)
|
518 |
+
|
519 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
520 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
521 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
522 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
523 |
+
raise ValueError(
|
524 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
525 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
526 |
+
)
|
527 |
+
|
528 |
+
if latents is None:
|
529 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
530 |
+
else:
|
531 |
+
latents = latents.to(device)
|
532 |
+
|
533 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
534 |
+
latents = latents * self.scheduler.init_noise_sigma
|
535 |
+
return latents
|
536 |
+
|
537 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
538 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
539 |
+
|
540 |
+
passed_add_embed_dim = (
|
541 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
542 |
+
)
|
543 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
544 |
+
|
545 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
546 |
+
raise ValueError(
|
547 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
548 |
+
)
|
549 |
+
|
550 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
551 |
+
return add_time_ids
|
552 |
+
|
553 |
+
@torch.no_grad()
|
554 |
+
def sample(
|
555 |
+
self,
|
556 |
+
prompt: Union[str, List[str]] = None,
|
557 |
+
height: Optional[int] = None,
|
558 |
+
width: Optional[int] = None,
|
559 |
+
num_inference_steps: int = 50,
|
560 |
+
guidance_scale: float = 5.0,
|
561 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
562 |
+
num_images_per_prompt: Optional[int] = 1,
|
563 |
+
eta: float = 0.0,
|
564 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
565 |
+
latents: Optional[torch.FloatTensor] = None,
|
566 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
567 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
568 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
569 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
570 |
+
output_type: Optional[str] = "pil",
|
571 |
+
return_dict: bool = True,
|
572 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
573 |
+
callback_steps: int = 1,
|
574 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
575 |
+
guidance_rescale: float = 0.0,
|
576 |
+
original_size: Optional[Tuple[int, int]] = None,
|
577 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
578 |
+
target_size: Optional[Tuple[int, int]] = None,
|
579 |
+
# Rich-Text args
|
580 |
+
use_guidance: bool = False,
|
581 |
+
inject_selfattn: float = 0.0,
|
582 |
+
inject_background: float = 0.0,
|
583 |
+
text_format_dict: Optional[dict] = None,
|
584 |
+
run_rich_text: bool = False,
|
585 |
+
):
|
586 |
+
r"""
|
587 |
+
Function invoked when calling the pipeline for generation.
|
588 |
+
|
589 |
+
Args:
|
590 |
+
prompt (`str` or `List[str]`, *optional*):
|
591 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
592 |
+
instead.
|
593 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
594 |
+
The height in pixels of the generated image.
|
595 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
596 |
+
The width in pixels of the generated image.
|
597 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
598 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
599 |
+
expense of slower inference.
|
600 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
601 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
602 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
603 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
604 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
605 |
+
usually at the expense of lower image quality.
|
606 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
607 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
608 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
609 |
+
less than `1`).
|
610 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
611 |
+
The number of images to generate per prompt.
|
612 |
+
eta (`float`, *optional*, defaults to 0.0):
|
613 |
+
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
614 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
615 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
616 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
617 |
+
to make generation deterministic.
|
618 |
+
latents (`torch.FloatTensor`, *optional*):
|
619 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
620 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
621 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
622 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
623 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
624 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
625 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
626 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
627 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
628 |
+
argument.
|
629 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
630 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
631 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
632 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
633 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
634 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
635 |
+
input argument.
|
636 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
637 |
+
The output format of the generate image. Choose between
|
638 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
639 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
640 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
641 |
+
plain tuple.
|
642 |
+
callback (`Callable`, *optional*):
|
643 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
644 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
645 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
646 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
647 |
+
called at every step.
|
648 |
+
cross_attention_kwargs (`dict`, *optional*):
|
649 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
650 |
+
`self.processor` in
|
651 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
652 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
653 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
654 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `Ο` in equation 16. of
|
655 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
656 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
657 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
658 |
+
TODO
|
659 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
660 |
+
TODO
|
661 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
662 |
+
TODO
|
663 |
+
|
664 |
+
Examples:
|
665 |
+
|
666 |
+
Returns:
|
667 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
668 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
669 |
+
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
|
670 |
+
element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
671 |
+
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
672 |
+
"""
|
673 |
+
# 0. Default height and width to unet
|
674 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
675 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
676 |
+
|
677 |
+
original_size = original_size or (height, width)
|
678 |
+
target_size = target_size or (height, width)
|
679 |
+
|
680 |
+
# 1. Check inputs. Raise error if not correct
|
681 |
+
self.check_inputs(
|
682 |
+
prompt,
|
683 |
+
height,
|
684 |
+
width,
|
685 |
+
callback_steps,
|
686 |
+
negative_prompt,
|
687 |
+
prompt_embeds,
|
688 |
+
negative_prompt_embeds,
|
689 |
+
pooled_prompt_embeds,
|
690 |
+
negative_pooled_prompt_embeds,
|
691 |
+
)
|
692 |
+
|
693 |
+
# 2. Define call parameters
|
694 |
+
if prompt is not None and isinstance(prompt, str):
|
695 |
+
batch_size = 1
|
696 |
+
elif prompt is not None and isinstance(prompt, list):
|
697 |
+
# TODO: support batched prompts
|
698 |
+
batch_size = 1
|
699 |
+
# batch_size = len(prompt)
|
700 |
+
else:
|
701 |
+
batch_size = prompt_embeds.shape[0]
|
702 |
+
|
703 |
+
device = self._execution_device
|
704 |
+
|
705 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
706 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
707 |
+
# corresponds to doing no classifier free guidance.
|
708 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
709 |
+
|
710 |
+
# 3. Encode input prompt
|
711 |
+
text_encoder_lora_scale = (
|
712 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
713 |
+
)
|
714 |
+
(
|
715 |
+
prompt_embeds,
|
716 |
+
negative_prompt_embeds,
|
717 |
+
pooled_prompt_embeds,
|
718 |
+
negative_pooled_prompt_embeds,
|
719 |
+
) = self.encode_prompt(
|
720 |
+
prompt,
|
721 |
+
device,
|
722 |
+
num_images_per_prompt,
|
723 |
+
do_classifier_free_guidance,
|
724 |
+
negative_prompt,
|
725 |
+
prompt_embeds=prompt_embeds,
|
726 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
727 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
728 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
729 |
+
lora_scale=text_encoder_lora_scale,
|
730 |
+
)
|
731 |
+
|
732 |
+
# 4. Prepare timesteps
|
733 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
734 |
+
|
735 |
+
timesteps = self.scheduler.timesteps
|
736 |
+
|
737 |
+
# 5. Prepare latent variables
|
738 |
+
num_channels_latents = self.unet.config.in_channels
|
739 |
+
latents = self.prepare_latents(
|
740 |
+
batch_size * num_images_per_prompt,
|
741 |
+
num_channels_latents,
|
742 |
+
height,
|
743 |
+
width,
|
744 |
+
prompt_embeds.dtype,
|
745 |
+
device,
|
746 |
+
generator,
|
747 |
+
latents,
|
748 |
+
)
|
749 |
+
|
750 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
751 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
752 |
+
|
753 |
+
# 7. Prepare added time ids & embeddings
|
754 |
+
add_text_embeds = pooled_prompt_embeds
|
755 |
+
add_time_ids = self._get_add_time_ids(
|
756 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
757 |
+
)
|
758 |
+
|
759 |
+
if do_classifier_free_guidance:
|
760 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
761 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
762 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
763 |
+
|
764 |
+
prompt_embeds = prompt_embeds.to(device)
|
765 |
+
add_text_embeds = add_text_embeds.to(device)
|
766 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
767 |
+
|
768 |
+
# 8. Denoising loop
|
769 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
770 |
+
if run_rich_text:
|
771 |
+
if inject_selfattn > 0 or inject_background > 0:
|
772 |
+
latents_reference = latents.clone().detach()
|
773 |
+
n_styles = prompt_embeds.shape[0]-1
|
774 |
+
self.masks = [mask.to(dtype=prompt_embeds.dtype) for mask in self.masks]
|
775 |
+
print(n_styles, len(self.masks))
|
776 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
777 |
+
for i, t in enumerate(self.scheduler.timesteps):
|
778 |
+
# predict the noise residual
|
779 |
+
with torch.no_grad():
|
780 |
+
feat_inject_step = t > (1-inject_selfattn) * 1000
|
781 |
+
background_inject_step = i < inject_background * len(self.scheduler.timesteps)
|
782 |
+
latent_model_input = self.scheduler.scale_model_input(latents, t)
|
783 |
+
# import ipdb;ipdb.set_trace()
|
784 |
+
# unconditional prediction
|
785 |
+
noise_pred_uncond_cur = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds[:1],
|
786 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
787 |
+
added_cond_kwargs={"text_embeds": add_text_embeds[:1], "time_ids": add_time_ids[:1]}
|
788 |
+
)['sample']
|
789 |
+
# tokens without any style or footnote
|
790 |
+
self.register_fontsize_hooks(text_format_dict)
|
791 |
+
noise_pred_text_cur = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds[-1:],
|
792 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
793 |
+
added_cond_kwargs={"text_embeds": add_text_embeds[-1:], "time_ids": add_time_ids[:1]}
|
794 |
+
)['sample']
|
795 |
+
self.remove_fontsize_hooks()
|
796 |
+
if inject_selfattn > 0 or inject_background > 0:
|
797 |
+
latent_reference_model_input = self.scheduler.scale_model_input(latents_reference, t)
|
798 |
+
noise_pred_uncond_refer = self.unet(latent_reference_model_input, t, encoder_hidden_states=prompt_embeds[:1],
|
799 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
800 |
+
added_cond_kwargs={"text_embeds": add_text_embeds[:1], "time_ids": add_time_ids[:1]}
|
801 |
+
)['sample']
|
802 |
+
self.register_selfattn_hooks(feat_inject_step)
|
803 |
+
noise_pred_text_refer = self.unet(latent_reference_model_input, t, encoder_hidden_states=prompt_embeds[-1:],
|
804 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
805 |
+
added_cond_kwargs={"text_embeds": add_text_embeds[-1:], "time_ids": add_time_ids[:1]}
|
806 |
+
)['sample']
|
807 |
+
self.remove_selfattn_hooks()
|
808 |
+
noise_pred_uncond = noise_pred_uncond_cur * self.masks[-1]
|
809 |
+
noise_pred_text = noise_pred_text_cur * self.masks[-1]
|
810 |
+
# tokens with style or footnote
|
811 |
+
for style_i, mask in enumerate(self.masks[:-1]):
|
812 |
+
self.register_replacement_hooks(feat_inject_step)
|
813 |
+
noise_pred_text_cur = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds[style_i+1:style_i+2],
|
814 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
815 |
+
added_cond_kwargs={"text_embeds": add_text_embeds[style_i+1:style_i+2], "time_ids": add_time_ids[:1]}
|
816 |
+
)['sample']
|
817 |
+
self.remove_replacement_hooks()
|
818 |
+
noise_pred_uncond = noise_pred_uncond + noise_pred_uncond_cur*mask
|
819 |
+
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask
|
820 |
+
|
821 |
+
# perform guidance
|
822 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
823 |
+
(noise_pred_text - noise_pred_uncond)
|
824 |
+
|
825 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
826 |
+
# TODO: Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
827 |
+
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
828 |
+
raise NotImplementedError
|
829 |
+
|
830 |
+
if inject_selfattn > 0 or background_inject_step > 0:
|
831 |
+
noise_pred_refer = noise_pred_uncond_refer + guidance_scale * \
|
832 |
+
(noise_pred_text_refer - noise_pred_uncond_refer)
|
833 |
+
|
834 |
+
# compute the previous noisy sample x_t -> x_t-1
|
835 |
+
latents_reference = self.scheduler.step(torch.cat([noise_pred, noise_pred_refer]), t,
|
836 |
+
torch.cat([latents, latents_reference]))[
|
837 |
+
'prev_sample']
|
838 |
+
latents, latents_reference = torch.chunk(
|
839 |
+
latents_reference, 2, dim=0)
|
840 |
+
|
841 |
+
else:
|
842 |
+
# compute the previous noisy sample x_t -> x_t-1
|
843 |
+
latents = self.scheduler.step(noise_pred, t, latents)[
|
844 |
+
'prev_sample']
|
845 |
+
|
846 |
+
# apply guidance
|
847 |
+
if use_guidance and t < text_format_dict['guidance_start_step']:
|
848 |
+
with torch.enable_grad():
|
849 |
+
if not latents.requires_grad:
|
850 |
+
latents.requires_grad = True
|
851 |
+
# import ipdb;ipdb.set_trace()
|
852 |
+
latents_0 = self.predict_x0(latents, noise_pred, t).to(dtype=latents.dtype)
|
853 |
+
latents_inp = latents_0 / self.vae.config.scaling_factor
|
854 |
+
imgs = self.vae.decode(latents_inp.to(dtype=torch.float32)).sample
|
855 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
856 |
+
loss_total = 0.
|
857 |
+
for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']):
|
858 |
+
avg_rgb = (
|
859 |
+
imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum()
|
860 |
+
loss = self.color_loss(
|
861 |
+
avg_rgb, rgb_val[:, :, 0, 0])*100
|
862 |
+
loss_total += loss
|
863 |
+
loss_total.backward()
|
864 |
+
latents = (
|
865 |
+
latents - latents.grad * text_format_dict['color_guidance_weight'] * text_format_dict['color_obj_atten_all']).detach().clone().to(dtype=prompt_embeds.dtype)
|
866 |
+
|
867 |
+
# apply background injection
|
868 |
+
if i == int(inject_background * len(self.scheduler.timesteps)) and inject_background > 0:
|
869 |
+
latents = latents_reference * self.masks[-1] + latents * \
|
870 |
+
(1-self.masks[-1])
|
871 |
+
|
872 |
+
# call the callback, if provided
|
873 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
874 |
+
progress_bar.update()
|
875 |
+
if callback is not None and i % callback_steps == 0:
|
876 |
+
callback(i, t, latents)
|
877 |
+
else:
|
878 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
879 |
+
for i, t in enumerate(timesteps):
|
880 |
+
# expand the latents if we are doing classifier free guidance
|
881 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
882 |
+
|
883 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
884 |
+
|
885 |
+
# predict the noise residual
|
886 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
887 |
+
noise_pred = self.unet(
|
888 |
+
latent_model_input,
|
889 |
+
t,
|
890 |
+
encoder_hidden_states=prompt_embeds,
|
891 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
892 |
+
added_cond_kwargs=added_cond_kwargs,
|
893 |
+
return_dict=False,
|
894 |
+
)[0]
|
895 |
+
|
896 |
+
# perform guidance
|
897 |
+
if do_classifier_free_guidance:
|
898 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
899 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
900 |
+
|
901 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
902 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
903 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
904 |
+
|
905 |
+
# compute the previous noisy sample x_t -> x_t-1
|
906 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
907 |
+
|
908 |
+
# call the callback, if provided
|
909 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
910 |
+
progress_bar.update()
|
911 |
+
if callback is not None and i % callback_steps == 0:
|
912 |
+
callback(i, t, latents)
|
913 |
+
|
914 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
915 |
+
self.vae.to(dtype=torch.float32)
|
916 |
+
|
917 |
+
use_torch_2_0_or_xformers = isinstance(
|
918 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
919 |
+
(
|
920 |
+
AttnProcessor2_0,
|
921 |
+
XFormersAttnProcessor,
|
922 |
+
LoRAXFormersAttnProcessor,
|
923 |
+
LoRAAttnProcessor2_0,
|
924 |
+
),
|
925 |
+
)
|
926 |
+
# if xformers or torch_2_0 is used attention block does not need
|
927 |
+
# to be in float32 which can save lots of memory
|
928 |
+
if use_torch_2_0_or_xformers:
|
929 |
+
self.vae.post_quant_conv.to(latents.dtype)
|
930 |
+
self.vae.decoder.conv_in.to(latents.dtype)
|
931 |
+
self.vae.decoder.mid_block.to(latents.dtype)
|
932 |
+
else:
|
933 |
+
latents = latents.float()
|
934 |
+
|
935 |
+
if not output_type == "latent":
|
936 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
937 |
+
else:
|
938 |
+
image = latents
|
939 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
940 |
+
|
941 |
+
image = self.watermark.apply_watermark(image)
|
942 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
943 |
+
|
944 |
+
# Offload last model to CPU
|
945 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
946 |
+
self.final_offload_hook.offload()
|
947 |
+
|
948 |
+
if not return_dict:
|
949 |
+
return (image,)
|
950 |
+
|
951 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
952 |
+
|
953 |
+
def predict_x0(self, x_t, eps_t, t):
|
954 |
+
alpha_t = self.scheduler.alphas_cumprod[t.cpu().long().item()]
|
955 |
+
return (x_t - eps_t * torch.sqrt(1-alpha_t)) / torch.sqrt(alpha_t)
|
956 |
+
|
957 |
+
def register_tokenmap_hooks(self):
|
958 |
+
r"""Function for registering hooks during evaluation.
|
959 |
+
We mainly store activation maps averaged over queries.
|
960 |
+
"""
|
961 |
+
self.forward_hooks = []
|
962 |
+
|
963 |
+
def save_activations(selfattn_maps, crossattn_maps, n_maps, name, module, inp, out):
|
964 |
+
r"""
|
965 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
966 |
+
"""
|
967 |
+
# out[0] - final output of attention layer
|
968 |
+
# out[1] - attention probability matrices
|
969 |
+
if name in n_maps:
|
970 |
+
n_maps[name] += 1
|
971 |
+
else:
|
972 |
+
n_maps[name] = 1
|
973 |
+
if 'attn2' in name:
|
974 |
+
assert out[1][0].shape[-1] == 77
|
975 |
+
if name in CrossAttentionLayers_XL and n_maps[name] > 10:
|
976 |
+
# if n_maps[name] > 10:
|
977 |
+
if name in crossattn_maps:
|
978 |
+
crossattn_maps[name] += out[1][0].detach().cpu()[1:2]
|
979 |
+
else:
|
980 |
+
crossattn_maps[name] = out[1][0].detach().cpu()[1:2]
|
981 |
+
# For visualization
|
982 |
+
# crossattn_maps[name].append(out[1][0].detach().cpu()[1:2])
|
983 |
+
else:
|
984 |
+
assert out[1][0].shape[-1] != 77
|
985 |
+
# if name in SelfAttentionLayers and n_maps[name] > 10:
|
986 |
+
if n_maps[name] > 10:
|
987 |
+
if name in selfattn_maps:
|
988 |
+
selfattn_maps[name] += out[1][0].detach().cpu()[1:2]
|
989 |
+
else:
|
990 |
+
selfattn_maps[name] = out[1][0].detach().cpu()[1:2]
|
991 |
+
|
992 |
+
selfattn_maps = collections.defaultdict(list)
|
993 |
+
crossattn_maps = collections.defaultdict(list)
|
994 |
+
n_maps = collections.defaultdict(list)
|
995 |
+
|
996 |
+
for name, module in self.unet.named_modules():
|
997 |
+
leaf_name = name.split('.')[-1]
|
998 |
+
if 'attn' in leaf_name:
|
999 |
+
# Register hook to obtain outputs at every attention layer.
|
1000 |
+
self.forward_hooks.append(module.register_forward_hook(
|
1001 |
+
partial(save_activations, selfattn_maps,
|
1002 |
+
crossattn_maps, n_maps, name)
|
1003 |
+
))
|
1004 |
+
# attention_dict is a dictionary containing attention maps for every attention layer
|
1005 |
+
self.selfattn_maps = selfattn_maps
|
1006 |
+
self.crossattn_maps = crossattn_maps
|
1007 |
+
self.n_maps = n_maps
|
1008 |
+
|
1009 |
+
def remove_tokenmap_hooks(self):
|
1010 |
+
for hook in self.forward_hooks:
|
1011 |
+
hook.remove()
|
1012 |
+
self.selfattn_maps = None
|
1013 |
+
self.crossattn_maps = None
|
1014 |
+
self.n_maps = None
|
1015 |
+
|
1016 |
+
def register_replacement_hooks(self, feat_inject_step=False):
|
1017 |
+
r"""Function for registering hooks to replace self attention.
|
1018 |
+
"""
|
1019 |
+
self.forward_replacement_hooks = []
|
1020 |
+
|
1021 |
+
def replace_activations(name, module, args):
|
1022 |
+
r"""
|
1023 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
1024 |
+
"""
|
1025 |
+
if 'attn1' in name:
|
1026 |
+
modified_args = (args[0], self.self_attention_maps_cur[name])
|
1027 |
+
return modified_args
|
1028 |
+
# cross attention injection
|
1029 |
+
# elif 'attn2' in name:
|
1030 |
+
# modified_map = {
|
1031 |
+
# 'reference': self.self_attention_maps_cur[name],
|
1032 |
+
# 'inject_pos': self.inject_pos,
|
1033 |
+
# }
|
1034 |
+
# modified_args = (args[0], modified_map)
|
1035 |
+
# return modified_args
|
1036 |
+
|
1037 |
+
def replace_resnet_activations(name, module, args):
|
1038 |
+
r"""
|
1039 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
1040 |
+
"""
|
1041 |
+
modified_args = (args[0], args[1],
|
1042 |
+
self.self_attention_maps_cur[name])
|
1043 |
+
return modified_args
|
1044 |
+
for name, module in self.unet.named_modules():
|
1045 |
+
leaf_name = name.split('.')[-1]
|
1046 |
+
if 'attn' in leaf_name and feat_inject_step:
|
1047 |
+
# Register hook to obtain outputs at every attention layer.
|
1048 |
+
self.forward_replacement_hooks.append(module.register_forward_pre_hook(
|
1049 |
+
partial(replace_activations, name)
|
1050 |
+
))
|
1051 |
+
if name == 'up_blocks.1.resnets.1' and feat_inject_step:
|
1052 |
+
# Register hook to obtain outputs at every attention layer.
|
1053 |
+
self.forward_replacement_hooks.append(module.register_forward_pre_hook(
|
1054 |
+
partial(replace_resnet_activations, name)
|
1055 |
+
))
|
1056 |
+
|
1057 |
+
def remove_replacement_hooks(self):
|
1058 |
+
for hook in self.forward_replacement_hooks:
|
1059 |
+
hook.remove()
|
1060 |
+
|
1061 |
+
|
1062 |
+
def register_selfattn_hooks(self, feat_inject_step=False):
|
1063 |
+
r"""Function for registering hooks during evaluation.
|
1064 |
+
We mainly store activation maps averaged over queries.
|
1065 |
+
"""
|
1066 |
+
self.selfattn_forward_hooks = []
|
1067 |
+
|
1068 |
+
def save_activations(activations, name, module, inp, out):
|
1069 |
+
r"""
|
1070 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
1071 |
+
"""
|
1072 |
+
# out[0] - final output of attention layer
|
1073 |
+
# out[1] - attention probability matrix
|
1074 |
+
if 'attn2' in name:
|
1075 |
+
assert out[1][1].shape[-1] == 77
|
1076 |
+
# cross attention injection
|
1077 |
+
# activations[name] = out[1][1].detach()
|
1078 |
+
else:
|
1079 |
+
assert out[1][1].shape[-1] != 77
|
1080 |
+
activations[name] = out[1][1].detach()
|
1081 |
+
|
1082 |
+
def save_resnet_activations(activations, name, module, inp, out):
|
1083 |
+
r"""
|
1084 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
1085 |
+
"""
|
1086 |
+
# out[0] - final output of residual layer
|
1087 |
+
# out[1] - residual hidden feature
|
1088 |
+
# import ipdb;ipdb.set_trace()
|
1089 |
+
assert out[1].shape[-1] == 64
|
1090 |
+
activations[name] = out[1].detach()
|
1091 |
+
attention_dict = collections.defaultdict(list)
|
1092 |
+
for name, module in self.unet.named_modules():
|
1093 |
+
leaf_name = name.split('.')[-1]
|
1094 |
+
if 'attn' in leaf_name and feat_inject_step:
|
1095 |
+
# Register hook to obtain outputs at every attention layer.
|
1096 |
+
self.selfattn_forward_hooks.append(module.register_forward_hook(
|
1097 |
+
partial(save_activations, attention_dict, name)
|
1098 |
+
))
|
1099 |
+
if name == 'up_blocks.1.resnets.1' and feat_inject_step:
|
1100 |
+
self.selfattn_forward_hooks.append(module.register_forward_hook(
|
1101 |
+
partial(save_resnet_activations, attention_dict, name)
|
1102 |
+
))
|
1103 |
+
# attention_dict is a dictionary containing attention maps for every attention layer
|
1104 |
+
self.self_attention_maps_cur = attention_dict
|
1105 |
+
|
1106 |
+
def remove_selfattn_hooks(self):
|
1107 |
+
for hook in self.selfattn_forward_hooks:
|
1108 |
+
hook.remove()
|
1109 |
+
|
1110 |
+
def register_fontsize_hooks(self, text_format_dict={}):
|
1111 |
+
r"""Function for registering hooks to replace self attention.
|
1112 |
+
"""
|
1113 |
+
self.forward_fontsize_hooks = []
|
1114 |
+
|
1115 |
+
def adjust_attn_weights(name, module, args):
|
1116 |
+
r"""
|
1117 |
+
PyTorch Forward hook to save outputs at each forward pass.
|
1118 |
+
"""
|
1119 |
+
if 'attn2' in name:
|
1120 |
+
modified_args = (args[0], None, attn_weights)
|
1121 |
+
return modified_args
|
1122 |
+
|
1123 |
+
if text_format_dict['word_pos'] is not None and text_format_dict['font_size'] is not None:
|
1124 |
+
attn_weights = {'word_pos': text_format_dict['word_pos'], 'font_size': text_format_dict['font_size']}
|
1125 |
+
else:
|
1126 |
+
attn_weights = None
|
1127 |
+
|
1128 |
+
for name, module in self.unet.named_modules():
|
1129 |
+
leaf_name = name.split('.')[-1]
|
1130 |
+
if 'attn' in leaf_name and attn_weights is not None:
|
1131 |
+
# Register hook to obtain outputs at every attention layer.
|
1132 |
+
self.forward_fontsize_hooks.append(module.register_forward_pre_hook(
|
1133 |
+
partial(adjust_attn_weights, name)
|
1134 |
+
))
|
1135 |
+
|
1136 |
+
def remove_fontsize_hooks(self):
|
1137 |
+
for hook in self.forward_fontsize_hooks:
|
1138 |
+
hook.remove()
|
models/resnet.py
ADDED
@@ -0,0 +1,882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from functools import partial
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
from diffusers.models.activations import get_activation
|
24 |
+
from diffusers.models.attention import AdaGroupNorm
|
25 |
+
from models.attention_processor import SpatialNorm
|
26 |
+
|
27 |
+
|
28 |
+
class Upsample1D(nn.Module):
|
29 |
+
"""A 1D upsampling layer with an optional convolution.
|
30 |
+
|
31 |
+
Parameters:
|
32 |
+
channels (`int`):
|
33 |
+
number of channels in the inputs and outputs.
|
34 |
+
use_conv (`bool`, default `False`):
|
35 |
+
option to use a convolution.
|
36 |
+
use_conv_transpose (`bool`, default `False`):
|
37 |
+
option to use a convolution transpose.
|
38 |
+
out_channels (`int`, optional):
|
39 |
+
number of output channels. Defaults to `channels`.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
43 |
+
super().__init__()
|
44 |
+
self.channels = channels
|
45 |
+
self.out_channels = out_channels or channels
|
46 |
+
self.use_conv = use_conv
|
47 |
+
self.use_conv_transpose = use_conv_transpose
|
48 |
+
self.name = name
|
49 |
+
|
50 |
+
self.conv = None
|
51 |
+
if use_conv_transpose:
|
52 |
+
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
|
53 |
+
elif use_conv:
|
54 |
+
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
|
55 |
+
|
56 |
+
def forward(self, inputs):
|
57 |
+
assert inputs.shape[1] == self.channels
|
58 |
+
if self.use_conv_transpose:
|
59 |
+
return self.conv(inputs)
|
60 |
+
|
61 |
+
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
|
62 |
+
|
63 |
+
if self.use_conv:
|
64 |
+
outputs = self.conv(outputs)
|
65 |
+
|
66 |
+
return outputs
|
67 |
+
|
68 |
+
|
69 |
+
class Downsample1D(nn.Module):
|
70 |
+
"""A 1D downsampling layer with an optional convolution.
|
71 |
+
|
72 |
+
Parameters:
|
73 |
+
channels (`int`):
|
74 |
+
number of channels in the inputs and outputs.
|
75 |
+
use_conv (`bool`, default `False`):
|
76 |
+
option to use a convolution.
|
77 |
+
out_channels (`int`, optional):
|
78 |
+
number of output channels. Defaults to `channels`.
|
79 |
+
padding (`int`, default `1`):
|
80 |
+
padding for the convolution.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
84 |
+
super().__init__()
|
85 |
+
self.channels = channels
|
86 |
+
self.out_channels = out_channels or channels
|
87 |
+
self.use_conv = use_conv
|
88 |
+
self.padding = padding
|
89 |
+
stride = 2
|
90 |
+
self.name = name
|
91 |
+
|
92 |
+
if use_conv:
|
93 |
+
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
94 |
+
else:
|
95 |
+
assert self.channels == self.out_channels
|
96 |
+
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
|
97 |
+
|
98 |
+
def forward(self, inputs):
|
99 |
+
assert inputs.shape[1] == self.channels
|
100 |
+
return self.conv(inputs)
|
101 |
+
|
102 |
+
|
103 |
+
class Upsample2D(nn.Module):
|
104 |
+
"""A 2D upsampling layer with an optional convolution.
|
105 |
+
|
106 |
+
Parameters:
|
107 |
+
channels (`int`):
|
108 |
+
number of channels in the inputs and outputs.
|
109 |
+
use_conv (`bool`, default `False`):
|
110 |
+
option to use a convolution.
|
111 |
+
use_conv_transpose (`bool`, default `False`):
|
112 |
+
option to use a convolution transpose.
|
113 |
+
out_channels (`int`, optional):
|
114 |
+
number of output channels. Defaults to `channels`.
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
118 |
+
super().__init__()
|
119 |
+
self.channels = channels
|
120 |
+
self.out_channels = out_channels or channels
|
121 |
+
self.use_conv = use_conv
|
122 |
+
self.use_conv_transpose = use_conv_transpose
|
123 |
+
self.name = name
|
124 |
+
|
125 |
+
conv = None
|
126 |
+
if use_conv_transpose:
|
127 |
+
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
|
128 |
+
elif use_conv:
|
129 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
|
130 |
+
|
131 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
132 |
+
if name == "conv":
|
133 |
+
self.conv = conv
|
134 |
+
else:
|
135 |
+
self.Conv2d_0 = conv
|
136 |
+
|
137 |
+
def forward(self, hidden_states, output_size=None):
|
138 |
+
assert hidden_states.shape[1] == self.channels
|
139 |
+
|
140 |
+
if self.use_conv_transpose:
|
141 |
+
return self.conv(hidden_states)
|
142 |
+
|
143 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
144 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
145 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
146 |
+
dtype = hidden_states.dtype
|
147 |
+
if dtype == torch.bfloat16:
|
148 |
+
hidden_states = hidden_states.to(torch.float32)
|
149 |
+
|
150 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
151 |
+
if hidden_states.shape[0] >= 64:
|
152 |
+
hidden_states = hidden_states.contiguous()
|
153 |
+
|
154 |
+
# if `output_size` is passed we force the interpolation output
|
155 |
+
# size and do not make use of `scale_factor=2`
|
156 |
+
if output_size is None:
|
157 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
158 |
+
else:
|
159 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
160 |
+
|
161 |
+
# If the input is bfloat16, we cast back to bfloat16
|
162 |
+
if dtype == torch.bfloat16:
|
163 |
+
hidden_states = hidden_states.to(dtype)
|
164 |
+
|
165 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
166 |
+
if self.use_conv:
|
167 |
+
if self.name == "conv":
|
168 |
+
hidden_states = self.conv(hidden_states)
|
169 |
+
else:
|
170 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
171 |
+
|
172 |
+
return hidden_states
|
173 |
+
|
174 |
+
|
175 |
+
class Downsample2D(nn.Module):
|
176 |
+
"""A 2D downsampling layer with an optional convolution.
|
177 |
+
|
178 |
+
Parameters:
|
179 |
+
channels (`int`):
|
180 |
+
number of channels in the inputs and outputs.
|
181 |
+
use_conv (`bool`, default `False`):
|
182 |
+
option to use a convolution.
|
183 |
+
out_channels (`int`, optional):
|
184 |
+
number of output channels. Defaults to `channels`.
|
185 |
+
padding (`int`, default `1`):
|
186 |
+
padding for the convolution.
|
187 |
+
"""
|
188 |
+
|
189 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
190 |
+
super().__init__()
|
191 |
+
self.channels = channels
|
192 |
+
self.out_channels = out_channels or channels
|
193 |
+
self.use_conv = use_conv
|
194 |
+
self.padding = padding
|
195 |
+
stride = 2
|
196 |
+
self.name = name
|
197 |
+
|
198 |
+
if use_conv:
|
199 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
200 |
+
else:
|
201 |
+
assert self.channels == self.out_channels
|
202 |
+
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
203 |
+
|
204 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
205 |
+
if name == "conv":
|
206 |
+
self.Conv2d_0 = conv
|
207 |
+
self.conv = conv
|
208 |
+
elif name == "Conv2d_0":
|
209 |
+
self.conv = conv
|
210 |
+
else:
|
211 |
+
self.conv = conv
|
212 |
+
|
213 |
+
def forward(self, hidden_states):
|
214 |
+
assert hidden_states.shape[1] == self.channels
|
215 |
+
if self.use_conv and self.padding == 0:
|
216 |
+
pad = (0, 1, 0, 1)
|
217 |
+
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
|
218 |
+
|
219 |
+
assert hidden_states.shape[1] == self.channels
|
220 |
+
hidden_states = self.conv(hidden_states)
|
221 |
+
|
222 |
+
return hidden_states
|
223 |
+
|
224 |
+
|
225 |
+
class FirUpsample2D(nn.Module):
|
226 |
+
"""A 2D FIR upsampling layer with an optional convolution.
|
227 |
+
|
228 |
+
Parameters:
|
229 |
+
channels (`int`):
|
230 |
+
number of channels in the inputs and outputs.
|
231 |
+
use_conv (`bool`, default `False`):
|
232 |
+
option to use a convolution.
|
233 |
+
out_channels (`int`, optional):
|
234 |
+
number of output channels. Defaults to `channels`.
|
235 |
+
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
|
236 |
+
kernel for the FIR filter.
|
237 |
+
"""
|
238 |
+
|
239 |
+
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
|
240 |
+
super().__init__()
|
241 |
+
out_channels = out_channels if out_channels else channels
|
242 |
+
if use_conv:
|
243 |
+
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
|
244 |
+
self.use_conv = use_conv
|
245 |
+
self.fir_kernel = fir_kernel
|
246 |
+
self.out_channels = out_channels
|
247 |
+
|
248 |
+
def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
|
249 |
+
"""Fused `upsample_2d()` followed by `Conv2d()`.
|
250 |
+
|
251 |
+
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
252 |
+
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
|
253 |
+
arbitrary order.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
257 |
+
weight: Weight tensor of the shape `[filterH, filterW, inChannels,
|
258 |
+
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
|
259 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
260 |
+
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
261 |
+
factor: Integer upsampling factor (default: 2).
|
262 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
|
266 |
+
datatype as `hidden_states`.
|
267 |
+
"""
|
268 |
+
|
269 |
+
assert isinstance(factor, int) and factor >= 1
|
270 |
+
|
271 |
+
# Setup filter kernel.
|
272 |
+
if kernel is None:
|
273 |
+
kernel = [1] * factor
|
274 |
+
|
275 |
+
# setup kernel
|
276 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
277 |
+
if kernel.ndim == 1:
|
278 |
+
kernel = torch.outer(kernel, kernel)
|
279 |
+
kernel /= torch.sum(kernel)
|
280 |
+
|
281 |
+
kernel = kernel * (gain * (factor**2))
|
282 |
+
|
283 |
+
if self.use_conv:
|
284 |
+
convH = weight.shape[2]
|
285 |
+
convW = weight.shape[3]
|
286 |
+
inC = weight.shape[1]
|
287 |
+
|
288 |
+
pad_value = (kernel.shape[0] - factor) - (convW - 1)
|
289 |
+
|
290 |
+
stride = (factor, factor)
|
291 |
+
# Determine data dimensions.
|
292 |
+
output_shape = (
|
293 |
+
(hidden_states.shape[2] - 1) * factor + convH,
|
294 |
+
(hidden_states.shape[3] - 1) * factor + convW,
|
295 |
+
)
|
296 |
+
output_padding = (
|
297 |
+
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
|
298 |
+
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
|
299 |
+
)
|
300 |
+
assert output_padding[0] >= 0 and output_padding[1] >= 0
|
301 |
+
num_groups = hidden_states.shape[1] // inC
|
302 |
+
|
303 |
+
# Transpose weights.
|
304 |
+
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
|
305 |
+
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
|
306 |
+
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
|
307 |
+
|
308 |
+
inverse_conv = F.conv_transpose2d(
|
309 |
+
hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
|
310 |
+
)
|
311 |
+
|
312 |
+
output = upfirdn2d_native(
|
313 |
+
inverse_conv,
|
314 |
+
torch.tensor(kernel, device=inverse_conv.device),
|
315 |
+
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
pad_value = kernel.shape[0] - factor
|
319 |
+
output = upfirdn2d_native(
|
320 |
+
hidden_states,
|
321 |
+
torch.tensor(kernel, device=hidden_states.device),
|
322 |
+
up=factor,
|
323 |
+
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
|
324 |
+
)
|
325 |
+
|
326 |
+
return output
|
327 |
+
|
328 |
+
def forward(self, hidden_states):
|
329 |
+
if self.use_conv:
|
330 |
+
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
|
331 |
+
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
332 |
+
else:
|
333 |
+
height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
|
334 |
+
|
335 |
+
return height
|
336 |
+
|
337 |
+
|
338 |
+
class FirDownsample2D(nn.Module):
|
339 |
+
"""A 2D FIR downsampling layer with an optional convolution.
|
340 |
+
|
341 |
+
Parameters:
|
342 |
+
channels (`int`):
|
343 |
+
number of channels in the inputs and outputs.
|
344 |
+
use_conv (`bool`, default `False`):
|
345 |
+
option to use a convolution.
|
346 |
+
out_channels (`int`, optional):
|
347 |
+
number of output channels. Defaults to `channels`.
|
348 |
+
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
|
349 |
+
kernel for the FIR filter.
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
|
353 |
+
super().__init__()
|
354 |
+
out_channels = out_channels if out_channels else channels
|
355 |
+
if use_conv:
|
356 |
+
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
|
357 |
+
self.fir_kernel = fir_kernel
|
358 |
+
self.use_conv = use_conv
|
359 |
+
self.out_channels = out_channels
|
360 |
+
|
361 |
+
def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
|
362 |
+
"""Fused `Conv2d()` followed by `downsample_2d()`.
|
363 |
+
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
364 |
+
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
|
365 |
+
arbitrary order.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
369 |
+
weight:
|
370 |
+
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
|
371 |
+
performed by `inChannels = x.shape[0] // numGroups`.
|
372 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
|
373 |
+
factor`, which corresponds to average pooling.
|
374 |
+
factor: Integer downsampling factor (default: 2).
|
375 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and
|
379 |
+
same datatype as `x`.
|
380 |
+
"""
|
381 |
+
|
382 |
+
assert isinstance(factor, int) and factor >= 1
|
383 |
+
if kernel is None:
|
384 |
+
kernel = [1] * factor
|
385 |
+
|
386 |
+
# setup kernel
|
387 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
388 |
+
if kernel.ndim == 1:
|
389 |
+
kernel = torch.outer(kernel, kernel)
|
390 |
+
kernel /= torch.sum(kernel)
|
391 |
+
|
392 |
+
kernel = kernel * gain
|
393 |
+
|
394 |
+
if self.use_conv:
|
395 |
+
_, _, convH, convW = weight.shape
|
396 |
+
pad_value = (kernel.shape[0] - factor) + (convW - 1)
|
397 |
+
stride_value = [factor, factor]
|
398 |
+
upfirdn_input = upfirdn2d_native(
|
399 |
+
hidden_states,
|
400 |
+
torch.tensor(kernel, device=hidden_states.device),
|
401 |
+
pad=((pad_value + 1) // 2, pad_value // 2),
|
402 |
+
)
|
403 |
+
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
|
404 |
+
else:
|
405 |
+
pad_value = kernel.shape[0] - factor
|
406 |
+
output = upfirdn2d_native(
|
407 |
+
hidden_states,
|
408 |
+
torch.tensor(kernel, device=hidden_states.device),
|
409 |
+
down=factor,
|
410 |
+
pad=((pad_value + 1) // 2, pad_value // 2),
|
411 |
+
)
|
412 |
+
|
413 |
+
return output
|
414 |
+
|
415 |
+
def forward(self, hidden_states):
|
416 |
+
if self.use_conv:
|
417 |
+
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
|
418 |
+
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
419 |
+
else:
|
420 |
+
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
|
421 |
+
|
422 |
+
return hidden_states
|
423 |
+
|
424 |
+
|
425 |
+
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
|
426 |
+
class KDownsample2D(nn.Module):
|
427 |
+
def __init__(self, pad_mode="reflect"):
|
428 |
+
super().__init__()
|
429 |
+
self.pad_mode = pad_mode
|
430 |
+
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
|
431 |
+
self.pad = kernel_1d.shape[1] // 2 - 1
|
432 |
+
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
|
433 |
+
|
434 |
+
def forward(self, inputs):
|
435 |
+
inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode)
|
436 |
+
weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
|
437 |
+
indices = torch.arange(inputs.shape[1], device=inputs.device)
|
438 |
+
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
|
439 |
+
weight[indices, indices] = kernel
|
440 |
+
return F.conv2d(inputs, weight, stride=2)
|
441 |
+
|
442 |
+
|
443 |
+
class KUpsample2D(nn.Module):
|
444 |
+
def __init__(self, pad_mode="reflect"):
|
445 |
+
super().__init__()
|
446 |
+
self.pad_mode = pad_mode
|
447 |
+
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
|
448 |
+
self.pad = kernel_1d.shape[1] // 2 - 1
|
449 |
+
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
|
450 |
+
|
451 |
+
def forward(self, inputs):
|
452 |
+
inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode)
|
453 |
+
weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
|
454 |
+
indices = torch.arange(inputs.shape[1], device=inputs.device)
|
455 |
+
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
|
456 |
+
weight[indices, indices] = kernel
|
457 |
+
return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)
|
458 |
+
|
459 |
+
|
460 |
+
class ResnetBlock2D(nn.Module):
|
461 |
+
r"""
|
462 |
+
A Resnet block.
|
463 |
+
|
464 |
+
Parameters:
|
465 |
+
in_channels (`int`): The number of channels in the input.
|
466 |
+
out_channels (`int`, *optional*, default to be `None`):
|
467 |
+
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
|
468 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
469 |
+
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
|
470 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
471 |
+
groups_out (`int`, *optional*, default to None):
|
472 |
+
The number of groups to use for the second normalization layer. if set to None, same as `groups`.
|
473 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
474 |
+
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
|
475 |
+
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
|
476 |
+
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
|
477 |
+
"ada_group" for a stronger conditioning with scale and shift.
|
478 |
+
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
|
479 |
+
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
|
480 |
+
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
|
481 |
+
use_in_shortcut (`bool`, *optional*, default to `True`):
|
482 |
+
If `True`, add a 1x1 nn.conv2d layer for skip-connection.
|
483 |
+
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
|
484 |
+
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
|
485 |
+
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
|
486 |
+
`conv_shortcut` output.
|
487 |
+
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
|
488 |
+
If None, same as `out_channels`.
|
489 |
+
"""
|
490 |
+
|
491 |
+
def __init__(
|
492 |
+
self,
|
493 |
+
*,
|
494 |
+
in_channels,
|
495 |
+
out_channels=None,
|
496 |
+
conv_shortcut=False,
|
497 |
+
dropout=0.0,
|
498 |
+
temb_channels=512,
|
499 |
+
groups=32,
|
500 |
+
groups_out=None,
|
501 |
+
pre_norm=True,
|
502 |
+
eps=1e-6,
|
503 |
+
non_linearity="swish",
|
504 |
+
skip_time_act=False,
|
505 |
+
time_embedding_norm="default", # default, scale_shift, ada_group, spatial
|
506 |
+
kernel=None,
|
507 |
+
output_scale_factor=1.0,
|
508 |
+
use_in_shortcut=None,
|
509 |
+
up=False,
|
510 |
+
down=False,
|
511 |
+
conv_shortcut_bias: bool = True,
|
512 |
+
conv_2d_out_channels: Optional[int] = None,
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.pre_norm = pre_norm
|
516 |
+
self.pre_norm = True
|
517 |
+
self.in_channels = in_channels
|
518 |
+
out_channels = in_channels if out_channels is None else out_channels
|
519 |
+
self.out_channels = out_channels
|
520 |
+
self.use_conv_shortcut = conv_shortcut
|
521 |
+
self.up = up
|
522 |
+
self.down = down
|
523 |
+
self.output_scale_factor = output_scale_factor
|
524 |
+
self.time_embedding_norm = time_embedding_norm
|
525 |
+
self.skip_time_act = skip_time_act
|
526 |
+
|
527 |
+
if groups_out is None:
|
528 |
+
groups_out = groups
|
529 |
+
|
530 |
+
if self.time_embedding_norm == "ada_group":
|
531 |
+
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
|
532 |
+
elif self.time_embedding_norm == "spatial":
|
533 |
+
self.norm1 = SpatialNorm(in_channels, temb_channels)
|
534 |
+
else:
|
535 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
536 |
+
|
537 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
538 |
+
|
539 |
+
if temb_channels is not None:
|
540 |
+
if self.time_embedding_norm == "default":
|
541 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
|
542 |
+
elif self.time_embedding_norm == "scale_shift":
|
543 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)
|
544 |
+
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
545 |
+
self.time_emb_proj = None
|
546 |
+
else:
|
547 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
548 |
+
else:
|
549 |
+
self.time_emb_proj = None
|
550 |
+
|
551 |
+
if self.time_embedding_norm == "ada_group":
|
552 |
+
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
|
553 |
+
elif self.time_embedding_norm == "spatial":
|
554 |
+
self.norm2 = SpatialNorm(out_channels, temb_channels)
|
555 |
+
else:
|
556 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
557 |
+
|
558 |
+
self.dropout = torch.nn.Dropout(dropout)
|
559 |
+
conv_2d_out_channels = conv_2d_out_channels or out_channels
|
560 |
+
self.conv2 = torch.nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
|
561 |
+
|
562 |
+
self.nonlinearity = get_activation(non_linearity)
|
563 |
+
|
564 |
+
self.upsample = self.downsample = None
|
565 |
+
if self.up:
|
566 |
+
if kernel == "fir":
|
567 |
+
fir_kernel = (1, 3, 3, 1)
|
568 |
+
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
|
569 |
+
elif kernel == "sde_vp":
|
570 |
+
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
571 |
+
else:
|
572 |
+
self.upsample = Upsample2D(in_channels, use_conv=False)
|
573 |
+
elif self.down:
|
574 |
+
if kernel == "fir":
|
575 |
+
fir_kernel = (1, 3, 3, 1)
|
576 |
+
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
|
577 |
+
elif kernel == "sde_vp":
|
578 |
+
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
|
579 |
+
else:
|
580 |
+
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
|
581 |
+
|
582 |
+
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
|
583 |
+
|
584 |
+
self.conv_shortcut = None
|
585 |
+
if self.use_in_shortcut:
|
586 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
587 |
+
in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
|
588 |
+
)
|
589 |
+
|
590 |
+
# Rich-Text: feature injection
|
591 |
+
def forward(self, input_tensor, temb, inject_states=None):
|
592 |
+
hidden_states = input_tensor
|
593 |
+
|
594 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
595 |
+
hidden_states = self.norm1(hidden_states, temb)
|
596 |
+
else:
|
597 |
+
hidden_states = self.norm1(hidden_states)
|
598 |
+
|
599 |
+
hidden_states = self.nonlinearity(hidden_states)
|
600 |
+
|
601 |
+
if self.upsample is not None:
|
602 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
603 |
+
if hidden_states.shape[0] >= 64:
|
604 |
+
input_tensor = input_tensor.contiguous()
|
605 |
+
hidden_states = hidden_states.contiguous()
|
606 |
+
input_tensor = self.upsample(input_tensor)
|
607 |
+
hidden_states = self.upsample(hidden_states)
|
608 |
+
elif self.downsample is not None:
|
609 |
+
input_tensor = self.downsample(input_tensor)
|
610 |
+
hidden_states = self.downsample(hidden_states)
|
611 |
+
|
612 |
+
hidden_states = self.conv1(hidden_states)
|
613 |
+
|
614 |
+
if self.time_emb_proj is not None:
|
615 |
+
if not self.skip_time_act:
|
616 |
+
temb = self.nonlinearity(temb)
|
617 |
+
temb = self.time_emb_proj(temb)[:, :, None, None]
|
618 |
+
|
619 |
+
if temb is not None and self.time_embedding_norm == "default":
|
620 |
+
hidden_states = hidden_states + temb
|
621 |
+
|
622 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
623 |
+
hidden_states = self.norm2(hidden_states, temb)
|
624 |
+
else:
|
625 |
+
hidden_states = self.norm2(hidden_states)
|
626 |
+
|
627 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
628 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
629 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
630 |
+
|
631 |
+
hidden_states = self.nonlinearity(hidden_states)
|
632 |
+
|
633 |
+
hidden_states = self.dropout(hidden_states)
|
634 |
+
hidden_states = self.conv2(hidden_states)
|
635 |
+
|
636 |
+
if self.conv_shortcut is not None:
|
637 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
638 |
+
|
639 |
+
# Rich-Text: feature injection
|
640 |
+
if inject_states is not None:
|
641 |
+
output_tensor = (input_tensor + inject_states) / self.output_scale_factor
|
642 |
+
else:
|
643 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
644 |
+
|
645 |
+
return output_tensor, hidden_states
|
646 |
+
|
647 |
+
|
648 |
+
# unet_rl.py
|
649 |
+
def rearrange_dims(tensor):
|
650 |
+
if len(tensor.shape) == 2:
|
651 |
+
return tensor[:, :, None]
|
652 |
+
if len(tensor.shape) == 3:
|
653 |
+
return tensor[:, :, None, :]
|
654 |
+
elif len(tensor.shape) == 4:
|
655 |
+
return tensor[:, :, 0, :]
|
656 |
+
else:
|
657 |
+
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")
|
658 |
+
|
659 |
+
|
660 |
+
class Conv1dBlock(nn.Module):
|
661 |
+
"""
|
662 |
+
Conv1d --> GroupNorm --> Mish
|
663 |
+
"""
|
664 |
+
|
665 |
+
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
|
666 |
+
super().__init__()
|
667 |
+
|
668 |
+
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
|
669 |
+
self.group_norm = nn.GroupNorm(n_groups, out_channels)
|
670 |
+
self.mish = nn.Mish()
|
671 |
+
|
672 |
+
def forward(self, inputs):
|
673 |
+
intermediate_repr = self.conv1d(inputs)
|
674 |
+
intermediate_repr = rearrange_dims(intermediate_repr)
|
675 |
+
intermediate_repr = self.group_norm(intermediate_repr)
|
676 |
+
intermediate_repr = rearrange_dims(intermediate_repr)
|
677 |
+
output = self.mish(intermediate_repr)
|
678 |
+
return output
|
679 |
+
|
680 |
+
|
681 |
+
# unet_rl.py
|
682 |
+
class ResidualTemporalBlock1D(nn.Module):
|
683 |
+
def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5):
|
684 |
+
super().__init__()
|
685 |
+
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
|
686 |
+
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)
|
687 |
+
|
688 |
+
self.time_emb_act = nn.Mish()
|
689 |
+
self.time_emb = nn.Linear(embed_dim, out_channels)
|
690 |
+
|
691 |
+
self.residual_conv = (
|
692 |
+
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
|
693 |
+
)
|
694 |
+
|
695 |
+
def forward(self, inputs, t):
|
696 |
+
"""
|
697 |
+
Args:
|
698 |
+
inputs : [ batch_size x inp_channels x horizon ]
|
699 |
+
t : [ batch_size x embed_dim ]
|
700 |
+
|
701 |
+
returns:
|
702 |
+
out : [ batch_size x out_channels x horizon ]
|
703 |
+
"""
|
704 |
+
t = self.time_emb_act(t)
|
705 |
+
t = self.time_emb(t)
|
706 |
+
out = self.conv_in(inputs) + rearrange_dims(t)
|
707 |
+
out = self.conv_out(out)
|
708 |
+
return out + self.residual_conv(inputs)
|
709 |
+
|
710 |
+
|
711 |
+
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
|
712 |
+
r"""Upsample2D a batch of 2D images with the given filter.
|
713 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
|
714 |
+
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
|
715 |
+
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
|
716 |
+
a: multiple of the upsampling factor.
|
717 |
+
|
718 |
+
Args:
|
719 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
720 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
721 |
+
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
722 |
+
factor: Integer upsampling factor (default: 2).
|
723 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
724 |
+
|
725 |
+
Returns:
|
726 |
+
output: Tensor of the shape `[N, C, H * factor, W * factor]`
|
727 |
+
"""
|
728 |
+
assert isinstance(factor, int) and factor >= 1
|
729 |
+
if kernel is None:
|
730 |
+
kernel = [1] * factor
|
731 |
+
|
732 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
733 |
+
if kernel.ndim == 1:
|
734 |
+
kernel = torch.outer(kernel, kernel)
|
735 |
+
kernel /= torch.sum(kernel)
|
736 |
+
|
737 |
+
kernel = kernel * (gain * (factor**2))
|
738 |
+
pad_value = kernel.shape[0] - factor
|
739 |
+
output = upfirdn2d_native(
|
740 |
+
hidden_states,
|
741 |
+
kernel.to(device=hidden_states.device),
|
742 |
+
up=factor,
|
743 |
+
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
|
744 |
+
)
|
745 |
+
return output
|
746 |
+
|
747 |
+
|
748 |
+
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
|
749 |
+
r"""Downsample2D a batch of 2D images with the given filter.
|
750 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
751 |
+
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
752 |
+
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
|
753 |
+
shape is a multiple of the downsampling factor.
|
754 |
+
|
755 |
+
Args:
|
756 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
757 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
758 |
+
(separable). The default is `[1] * factor`, which corresponds to average pooling.
|
759 |
+
factor: Integer downsampling factor (default: 2).
|
760 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
761 |
+
|
762 |
+
Returns:
|
763 |
+
output: Tensor of the shape `[N, C, H // factor, W // factor]`
|
764 |
+
"""
|
765 |
+
|
766 |
+
assert isinstance(factor, int) and factor >= 1
|
767 |
+
if kernel is None:
|
768 |
+
kernel = [1] * factor
|
769 |
+
|
770 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
771 |
+
if kernel.ndim == 1:
|
772 |
+
kernel = torch.outer(kernel, kernel)
|
773 |
+
kernel /= torch.sum(kernel)
|
774 |
+
|
775 |
+
kernel = kernel * gain
|
776 |
+
pad_value = kernel.shape[0] - factor
|
777 |
+
output = upfirdn2d_native(
|
778 |
+
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
|
779 |
+
)
|
780 |
+
return output
|
781 |
+
|
782 |
+
|
783 |
+
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
|
784 |
+
up_x = up_y = up
|
785 |
+
down_x = down_y = down
|
786 |
+
pad_x0 = pad_y0 = pad[0]
|
787 |
+
pad_x1 = pad_y1 = pad[1]
|
788 |
+
|
789 |
+
_, channel, in_h, in_w = tensor.shape
|
790 |
+
tensor = tensor.reshape(-1, in_h, in_w, 1)
|
791 |
+
|
792 |
+
_, in_h, in_w, minor = tensor.shape
|
793 |
+
kernel_h, kernel_w = kernel.shape
|
794 |
+
|
795 |
+
out = tensor.view(-1, in_h, 1, in_w, 1, minor)
|
796 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
797 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
798 |
+
|
799 |
+
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
800 |
+
out = out.to(tensor.device) # Move back to mps if necessary
|
801 |
+
out = out[
|
802 |
+
:,
|
803 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
804 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
805 |
+
:,
|
806 |
+
]
|
807 |
+
|
808 |
+
out = out.permute(0, 3, 1, 2)
|
809 |
+
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
810 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
811 |
+
out = F.conv2d(out, w)
|
812 |
+
out = out.reshape(
|
813 |
+
-1,
|
814 |
+
minor,
|
815 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
816 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
817 |
+
)
|
818 |
+
out = out.permute(0, 2, 3, 1)
|
819 |
+
out = out[:, ::down_y, ::down_x, :]
|
820 |
+
|
821 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
822 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
823 |
+
|
824 |
+
return out.view(-1, channel, out_h, out_w)
|
825 |
+
|
826 |
+
|
827 |
+
class TemporalConvLayer(nn.Module):
|
828 |
+
"""
|
829 |
+
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
|
830 |
+
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
|
831 |
+
"""
|
832 |
+
|
833 |
+
def __init__(self, in_dim, out_dim=None, dropout=0.0):
|
834 |
+
super().__init__()
|
835 |
+
out_dim = out_dim or in_dim
|
836 |
+
self.in_dim = in_dim
|
837 |
+
self.out_dim = out_dim
|
838 |
+
|
839 |
+
# conv layers
|
840 |
+
self.conv1 = nn.Sequential(
|
841 |
+
nn.GroupNorm(32, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0))
|
842 |
+
)
|
843 |
+
self.conv2 = nn.Sequential(
|
844 |
+
nn.GroupNorm(32, out_dim),
|
845 |
+
nn.SiLU(),
|
846 |
+
nn.Dropout(dropout),
|
847 |
+
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
848 |
+
)
|
849 |
+
self.conv3 = nn.Sequential(
|
850 |
+
nn.GroupNorm(32, out_dim),
|
851 |
+
nn.SiLU(),
|
852 |
+
nn.Dropout(dropout),
|
853 |
+
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
854 |
+
)
|
855 |
+
self.conv4 = nn.Sequential(
|
856 |
+
nn.GroupNorm(32, out_dim),
|
857 |
+
nn.SiLU(),
|
858 |
+
nn.Dropout(dropout),
|
859 |
+
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
860 |
+
)
|
861 |
+
|
862 |
+
# zero out the last layer params,so the conv block is identity
|
863 |
+
nn.init.zeros_(self.conv4[-1].weight)
|
864 |
+
nn.init.zeros_(self.conv4[-1].bias)
|
865 |
+
|
866 |
+
def forward(self, hidden_states, num_frames=1):
|
867 |
+
hidden_states = (
|
868 |
+
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4)
|
869 |
+
)
|
870 |
+
|
871 |
+
identity = hidden_states
|
872 |
+
hidden_states = self.conv1(hidden_states)
|
873 |
+
hidden_states = self.conv2(hidden_states)
|
874 |
+
hidden_states = self.conv3(hidden_states)
|
875 |
+
hidden_states = self.conv4(hidden_states)
|
876 |
+
|
877 |
+
hidden_states = identity + hidden_states
|
878 |
+
|
879 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(
|
880 |
+
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
|
881 |
+
)
|
882 |
+
return hidden_states
|
models/transformer_2d.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.models.embeddings import PatchEmbed
|
25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
26 |
+
|
27 |
+
from models.attention import BasicTransformerBlock
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class Transformer2DModelOutput(BaseOutput):
|
31 |
+
"""
|
32 |
+
The output of [`Transformer2DModel`].
|
33 |
+
|
34 |
+
Args:
|
35 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
36 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
37 |
+
distributions for the unnoised latent pixels.
|
38 |
+
"""
|
39 |
+
|
40 |
+
sample: torch.FloatTensor
|
41 |
+
|
42 |
+
|
43 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
44 |
+
"""
|
45 |
+
A 2D Transformer model for image-like data.
|
46 |
+
|
47 |
+
Parameters:
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
49 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
50 |
+
in_channels (`int`, *optional*):
|
51 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
52 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
53 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
54 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
55 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
56 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
57 |
+
num_vector_embeds (`int`, *optional*):
|
58 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
59 |
+
Includes the class for the masked latent pixel.
|
60 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
61 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
62 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
63 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
64 |
+
added to the hidden states.
|
65 |
+
|
66 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
67 |
+
attention_bias (`bool`, *optional*):
|
68 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
69 |
+
"""
|
70 |
+
|
71 |
+
@register_to_config
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
num_attention_heads: int = 16,
|
75 |
+
attention_head_dim: int = 88,
|
76 |
+
in_channels: Optional[int] = None,
|
77 |
+
out_channels: Optional[int] = None,
|
78 |
+
num_layers: int = 1,
|
79 |
+
dropout: float = 0.0,
|
80 |
+
norm_num_groups: int = 32,
|
81 |
+
cross_attention_dim: Optional[int] = None,
|
82 |
+
attention_bias: bool = False,
|
83 |
+
sample_size: Optional[int] = None,
|
84 |
+
num_vector_embeds: Optional[int] = None,
|
85 |
+
patch_size: Optional[int] = None,
|
86 |
+
activation_fn: str = "geglu",
|
87 |
+
num_embeds_ada_norm: Optional[int] = None,
|
88 |
+
use_linear_projection: bool = False,
|
89 |
+
only_cross_attention: bool = False,
|
90 |
+
upcast_attention: bool = False,
|
91 |
+
norm_type: str = "layer_norm",
|
92 |
+
norm_elementwise_affine: bool = True,
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
self.use_linear_projection = use_linear_projection
|
96 |
+
self.num_attention_heads = num_attention_heads
|
97 |
+
self.attention_head_dim = attention_head_dim
|
98 |
+
inner_dim = num_attention_heads * attention_head_dim
|
99 |
+
|
100 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
101 |
+
# Define whether input is continuous or discrete depending on configuration
|
102 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
103 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
104 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
105 |
+
|
106 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
107 |
+
deprecation_message = (
|
108 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
109 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
110 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
111 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
112 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
113 |
+
)
|
114 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
115 |
+
norm_type = "ada_norm"
|
116 |
+
|
117 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
118 |
+
raise ValueError(
|
119 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
120 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
121 |
+
)
|
122 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
123 |
+
raise ValueError(
|
124 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
125 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
126 |
+
)
|
127 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
128 |
+
raise ValueError(
|
129 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
130 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
131 |
+
)
|
132 |
+
|
133 |
+
# 2. Define input layers
|
134 |
+
if self.is_input_continuous:
|
135 |
+
self.in_channels = in_channels
|
136 |
+
|
137 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
138 |
+
if use_linear_projection:
|
139 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
140 |
+
else:
|
141 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
142 |
+
elif self.is_input_vectorized:
|
143 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
144 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
145 |
+
|
146 |
+
self.height = sample_size
|
147 |
+
self.width = sample_size
|
148 |
+
self.num_vector_embeds = num_vector_embeds
|
149 |
+
self.num_latent_pixels = self.height * self.width
|
150 |
+
|
151 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
152 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
153 |
+
)
|
154 |
+
elif self.is_input_patches:
|
155 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
156 |
+
|
157 |
+
self.height = sample_size
|
158 |
+
self.width = sample_size
|
159 |
+
|
160 |
+
self.patch_size = patch_size
|
161 |
+
self.pos_embed = PatchEmbed(
|
162 |
+
height=sample_size,
|
163 |
+
width=sample_size,
|
164 |
+
patch_size=patch_size,
|
165 |
+
in_channels=in_channels,
|
166 |
+
embed_dim=inner_dim,
|
167 |
+
)
|
168 |
+
|
169 |
+
# 3. Define transformers blocks
|
170 |
+
self.transformer_blocks = nn.ModuleList(
|
171 |
+
[
|
172 |
+
BasicTransformerBlock(
|
173 |
+
inner_dim,
|
174 |
+
num_attention_heads,
|
175 |
+
attention_head_dim,
|
176 |
+
dropout=dropout,
|
177 |
+
cross_attention_dim=cross_attention_dim,
|
178 |
+
activation_fn=activation_fn,
|
179 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
180 |
+
attention_bias=attention_bias,
|
181 |
+
only_cross_attention=only_cross_attention,
|
182 |
+
upcast_attention=upcast_attention,
|
183 |
+
norm_type=norm_type,
|
184 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
185 |
+
)
|
186 |
+
for d in range(num_layers)
|
187 |
+
]
|
188 |
+
)
|
189 |
+
|
190 |
+
# 4. Define output layers
|
191 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
192 |
+
if self.is_input_continuous:
|
193 |
+
# TODO: should use out_channels for continuous projections
|
194 |
+
if use_linear_projection:
|
195 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
196 |
+
else:
|
197 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
198 |
+
elif self.is_input_vectorized:
|
199 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
200 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
201 |
+
elif self.is_input_patches:
|
202 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
203 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
204 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
205 |
+
|
206 |
+
def forward(
|
207 |
+
self,
|
208 |
+
hidden_states: torch.Tensor,
|
209 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
210 |
+
timestep: Optional[torch.LongTensor] = None,
|
211 |
+
class_labels: Optional[torch.LongTensor] = None,
|
212 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
213 |
+
attention_mask: Optional[torch.Tensor] = None,
|
214 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
215 |
+
return_dict: bool = True,
|
216 |
+
):
|
217 |
+
"""
|
218 |
+
The [`Transformer2DModel`] forward method.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
222 |
+
Input `hidden_states`.
|
223 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
224 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
225 |
+
self-attention.
|
226 |
+
timestep ( `torch.LongTensor`, *optional*):
|
227 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
228 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
229 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
230 |
+
`AdaLayerZeroNorm`.
|
231 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
232 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
233 |
+
|
234 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
235 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
236 |
+
|
237 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
238 |
+
above. This bias will be added to the cross-attention scores.
|
239 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
240 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
241 |
+
tuple.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
245 |
+
`tuple` where the first element is the sample tensor.
|
246 |
+
"""
|
247 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
248 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
249 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
250 |
+
# expects mask of shape:
|
251 |
+
# [batch, key_tokens]
|
252 |
+
# adds singleton query_tokens dimension:
|
253 |
+
# [batch, 1, key_tokens]
|
254 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
255 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
256 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
257 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
258 |
+
# assume that mask is expressed as:
|
259 |
+
# (1 = keep, 0 = discard)
|
260 |
+
# convert mask into a bias that can be added to attention scores:
|
261 |
+
# (keep = +0, discard = -10000.0)
|
262 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
263 |
+
attention_mask = attention_mask.unsqueeze(1)
|
264 |
+
|
265 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
266 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
267 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
268 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
269 |
+
|
270 |
+
# 1. Input
|
271 |
+
if self.is_input_continuous:
|
272 |
+
batch, _, height, width = hidden_states.shape
|
273 |
+
residual = hidden_states
|
274 |
+
|
275 |
+
hidden_states = self.norm(hidden_states)
|
276 |
+
if not self.use_linear_projection:
|
277 |
+
hidden_states = self.proj_in(hidden_states)
|
278 |
+
inner_dim = hidden_states.shape[1]
|
279 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
280 |
+
else:
|
281 |
+
inner_dim = hidden_states.shape[1]
|
282 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
283 |
+
hidden_states = self.proj_in(hidden_states)
|
284 |
+
elif self.is_input_vectorized:
|
285 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
286 |
+
elif self.is_input_patches:
|
287 |
+
hidden_states = self.pos_embed(hidden_states)
|
288 |
+
|
289 |
+
# 2. Blocks
|
290 |
+
for block in self.transformer_blocks:
|
291 |
+
hidden_states = block(
|
292 |
+
hidden_states,
|
293 |
+
attention_mask=attention_mask,
|
294 |
+
encoder_hidden_states=encoder_hidden_states,
|
295 |
+
encoder_attention_mask=encoder_attention_mask,
|
296 |
+
timestep=timestep,
|
297 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
298 |
+
class_labels=class_labels,
|
299 |
+
)
|
300 |
+
|
301 |
+
# 3. Output
|
302 |
+
if self.is_input_continuous:
|
303 |
+
if not self.use_linear_projection:
|
304 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
305 |
+
hidden_states = self.proj_out(hidden_states)
|
306 |
+
else:
|
307 |
+
hidden_states = self.proj_out(hidden_states)
|
308 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
309 |
+
|
310 |
+
output = hidden_states + residual
|
311 |
+
elif self.is_input_vectorized:
|
312 |
+
hidden_states = self.norm_out(hidden_states)
|
313 |
+
logits = self.out(hidden_states)
|
314 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
315 |
+
logits = logits.permute(0, 2, 1)
|
316 |
+
|
317 |
+
# log(p(x_0))
|
318 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
319 |
+
elif self.is_input_patches:
|
320 |
+
# TODO: cleanup!
|
321 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
322 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
323 |
+
)
|
324 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
325 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
326 |
+
hidden_states = self.proj_out_2(hidden_states)
|
327 |
+
|
328 |
+
# unpatchify
|
329 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
330 |
+
hidden_states = hidden_states.reshape(
|
331 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
332 |
+
)
|
333 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
334 |
+
output = hidden_states.reshape(
|
335 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
336 |
+
)
|
337 |
+
|
338 |
+
if not return_dict:
|
339 |
+
return (output,)
|
340 |
+
|
341 |
+
return Transformer2DModelOutput(sample=output)
|
models/unet_2d_blocks.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
models/unet_2d_condition.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -12,21 +12,38 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
from dataclasses import dataclass
|
15 |
-
from typing import Optional, Tuple, Union
|
16 |
|
17 |
import torch
|
18 |
import torch.nn as nn
|
19 |
import torch.utils.checkpoint
|
20 |
|
21 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
-
from diffusers.
|
23 |
from diffusers.utils import BaseOutput, logging
|
24 |
-
from diffusers.models.
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
CrossAttnDownBlock2D,
|
27 |
CrossAttnUpBlock2D,
|
28 |
DownBlock2D,
|
29 |
UNetMidBlock2DCrossAttn,
|
|
|
30 |
UpBlock2D,
|
31 |
get_down_block,
|
32 |
get_up_block,
|
@@ -39,35 +56,43 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
39 |
@dataclass
|
40 |
class UNet2DConditionOutput(BaseOutput):
|
41 |
"""
|
|
|
|
|
42 |
Args:
|
43 |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
44 |
-
|
45 |
"""
|
46 |
|
47 |
-
sample: torch.FloatTensor
|
48 |
|
49 |
|
50 |
-
class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
51 |
r"""
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
This model inherits from [`ModelMixin`]. Check the superclass documentation for
|
56 |
-
|
57 |
|
58 |
Parameters:
|
59 |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
60 |
Height and width of input/output sample.
|
61 |
-
in_channels (`int`, *optional*, defaults to 4):
|
62 |
-
out_channels (`int`, *optional*, defaults to 4):
|
63 |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
64 |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
65 |
Whether to flip the sin to cos in the time embedding.
|
66 |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
67 |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
68 |
The tuple of downsample blocks to use.
|
69 |
-
|
|
|
|
|
|
|
70 |
The tuple of upsample blocks to use.
|
|
|
|
|
|
|
71 |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
72 |
The tuple of output channels for each block.
|
73 |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
@@ -75,9 +100,58 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
75 |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
76 |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
77 |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
|
|
78 |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
79 |
-
cross_attention_dim (`int`, *optional*, defaults to 1280):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
"""
|
82 |
|
83 |
_supports_gradient_checkpointing = True
|
@@ -97,50 +171,262 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
97 |
"CrossAttnDownBlock2D",
|
98 |
"DownBlock2D",
|
99 |
),
|
|
|
100 |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
101 |
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
102 |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
103 |
-
layers_per_block: int = 2,
|
104 |
downsample_padding: int = 1,
|
105 |
mid_block_scale_factor: float = 1,
|
106 |
act_fn: str = "silu",
|
107 |
-
norm_num_groups: int = 32,
|
108 |
norm_eps: float = 1e-5,
|
109 |
-
cross_attention_dim: int = 1280,
|
|
|
|
|
|
|
110 |
attention_head_dim: Union[int, Tuple[int]] = 8,
|
|
|
111 |
dual_cross_attention: bool = False,
|
112 |
use_linear_projection: bool = False,
|
|
|
|
|
|
|
113 |
num_class_embeds: Optional[int] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
):
|
115 |
super().__init__()
|
116 |
|
117 |
self.sample_size = sample_size
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
# input
|
122 |
-
|
|
|
|
|
|
|
123 |
|
124 |
# time
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
# class embedding
|
131 |
-
if num_class_embeds is not None:
|
132 |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
self.down_blocks = nn.ModuleList([])
|
135 |
-
self.mid_block = None
|
136 |
self.up_blocks = nn.ModuleList([])
|
137 |
|
138 |
if isinstance(only_cross_attention, bool):
|
|
|
|
|
|
|
139 |
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
if isinstance(attention_head_dim, int):
|
142 |
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# down
|
145 |
output_channel = block_out_channels[0]
|
146 |
for i, down_block_type in enumerate(down_block_types):
|
@@ -150,45 +436,78 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
150 |
|
151 |
down_block = get_down_block(
|
152 |
down_block_type,
|
153 |
-
num_layers=layers_per_block,
|
|
|
154 |
in_channels=input_channel,
|
155 |
out_channels=output_channel,
|
156 |
-
temb_channels=
|
157 |
add_downsample=not is_final_block,
|
158 |
resnet_eps=norm_eps,
|
159 |
resnet_act_fn=act_fn,
|
160 |
resnet_groups=norm_num_groups,
|
161 |
-
cross_attention_dim=cross_attention_dim,
|
162 |
-
|
163 |
downsample_padding=downsample_padding,
|
164 |
dual_cross_attention=dual_cross_attention,
|
165 |
use_linear_projection=use_linear_projection,
|
166 |
only_cross_attention=only_cross_attention[i],
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
self.down_blocks.append(down_block)
|
169 |
|
170 |
# mid
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
# count how many layers upsample the images
|
186 |
self.num_upsamplers = 0
|
187 |
|
188 |
# up
|
189 |
reversed_block_out_channels = list(reversed(block_out_channels))
|
190 |
-
|
|
|
|
|
|
|
191 |
only_cross_attention = list(reversed(only_cross_attention))
|
|
|
192 |
output_channel = reversed_block_out_channels[0]
|
193 |
for i, up_block_type in enumerate(up_block_types):
|
194 |
is_final_block = i == len(block_out_channels) - 1
|
@@ -206,63 +525,176 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
206 |
|
207 |
up_block = get_up_block(
|
208 |
up_block_type,
|
209 |
-
num_layers=
|
|
|
210 |
in_channels=input_channel,
|
211 |
out_channels=output_channel,
|
212 |
prev_output_channel=prev_output_channel,
|
213 |
-
temb_channels=
|
214 |
add_upsample=add_upsample,
|
215 |
resnet_eps=norm_eps,
|
216 |
resnet_act_fn=act_fn,
|
217 |
resnet_groups=norm_num_groups,
|
218 |
-
cross_attention_dim=
|
219 |
-
|
220 |
dual_cross_attention=dual_cross_attention,
|
221 |
use_linear_projection=use_linear_projection,
|
222 |
only_cross_attention=only_cross_attention[i],
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
)
|
224 |
self.up_blocks.append(up_block)
|
225 |
prev_output_channel = output_channel
|
226 |
|
227 |
# out
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
def set_attention_slice(self, slice_size):
|
233 |
-
head_dims = self.config.attention_head_dim
|
234 |
-
head_dims = [head_dims] if isinstance(head_dims, int) else head_dims
|
235 |
-
if slice_size is not None and any(dim % slice_size != 0 for dim in head_dims):
|
236 |
-
raise ValueError(
|
237 |
-
f"Make sure slice_size {slice_size} is a common divisor of "
|
238 |
-
f"the number of heads used in cross_attention: {head_dims}"
|
239 |
)
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
raise ValueError(
|
242 |
-
f"
|
243 |
-
f"
|
244 |
)
|
245 |
|
246 |
-
|
247 |
-
if hasattr(
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
-
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
260 |
|
261 |
-
|
|
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
|
267 |
def _set_gradient_checkpointing(self, module, value=False):
|
268 |
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
@@ -274,24 +706,44 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
274 |
timestep: Union[torch.Tensor, float, int],
|
275 |
encoder_hidden_states: torch.Tensor,
|
276 |
class_labels: Optional[torch.Tensor] = None,
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
return_dict: bool = True,
|
279 |
) -> Union[UNet2DConditionOutput, Tuple]:
|
280 |
r"""
|
|
|
|
|
281 |
Args:
|
282 |
-
sample (`torch.FloatTensor`):
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
return_dict (`bool`, *optional*, defaults to `True`):
|
286 |
-
Whether or not to return a [
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
Returns:
|
289 |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
290 |
-
|
291 |
-
|
292 |
"""
|
293 |
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
294 |
-
# The overall upsampling factor is equal to 2 ** (# num of upsampling
|
295 |
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
296 |
# on the fly if necessary.
|
297 |
default_overall_up_factor = 2**self.num_upsamplers
|
@@ -304,6 +756,27 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
304 |
logger.info("Forward upsample size to force interpolation output size.")
|
305 |
forward_upsample_size = True
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
# 0. center input if necessary
|
308 |
if self.config.center_input_sample:
|
309 |
sample = 2 * sample - 1.0
|
@@ -312,8 +785,14 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
312 |
timesteps = timestep
|
313 |
if not torch.is_tensor(timesteps):
|
314 |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
timesteps = timesteps[None].to(sample.device)
|
318 |
|
319 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
@@ -321,47 +800,148 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
321 |
|
322 |
t_emb = self.time_proj(timesteps)
|
323 |
|
324 |
-
#
|
325 |
# but time_embedding might actually be running in fp16. so we need to cast here.
|
326 |
# there might be better ways to encapsulate this.
|
327 |
-
t_emb = t_emb.to(dtype=
|
328 |
-
|
|
|
|
|
329 |
|
330 |
-
if self.
|
331 |
if class_labels is None:
|
332 |
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
333 |
-
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
334 |
-
emb = emb + class_emb
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
# 2. pre-process
|
337 |
sample = self.conv_in(sample)
|
338 |
|
339 |
# 3. down
|
340 |
down_block_res_samples = (sample,)
|
341 |
for downsample_block in self.down_blocks:
|
342 |
-
if hasattr(downsample_block, "
|
343 |
-
|
344 |
-
sample,
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
sample, res_samples = downsample_block(
|
352 |
-
hidden_states=sample,
|
353 |
-
temb=emb,
|
354 |
-
encoder_hidden_states=encoder_hidden_states,
|
355 |
-
)
|
356 |
else:
|
357 |
-
if isinstance(downsample_block, CrossAttnDownBlock2D):
|
358 |
-
import ipdb;ipdb.set_trace()
|
359 |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
|
|
360 |
down_block_res_samples += res_samples
|
361 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
# 4. mid
|
363 |
-
|
364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
# 5. up
|
367 |
for i, upsample_block in enumerate(self.up_blocks):
|
@@ -375,34 +955,26 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
|
375 |
if not is_final_block and forward_upsample_size:
|
376 |
upsample_size = down_block_res_samples[-1].shape[2:]
|
377 |
|
378 |
-
if hasattr(upsample_block, "
|
379 |
-
|
380 |
-
sample
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
sample = upsample_block(
|
390 |
-
hidden_states=sample,
|
391 |
-
temb=emb,
|
392 |
-
res_hidden_states_tuple=res_samples,
|
393 |
-
encoder_hidden_states=encoder_hidden_states,
|
394 |
-
upsample_size=upsample_size,
|
395 |
-
)
|
396 |
else:
|
397 |
-
if isinstance(upsample_block, CrossAttnUpBlock2D):
|
398 |
-
upsample_block.attentions
|
399 |
-
import ipdb;ipdb.set_trace()
|
400 |
sample = upsample_block(
|
401 |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
402 |
)
|
|
|
403 |
# 6. post-process
|
404 |
-
|
405 |
-
|
|
|
406 |
sample = self.conv_out(sample)
|
407 |
|
408 |
if not return_dict:
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
|
17 |
import torch
|
18 |
import torch.nn as nn
|
19 |
import torch.utils.checkpoint
|
20 |
|
21 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
|
26 |
+
from diffusers.models.embeddings import (
|
27 |
+
GaussianFourierProjection,
|
28 |
+
ImageHintTimeEmbedding,
|
29 |
+
ImageProjection,
|
30 |
+
ImageTimeEmbedding,
|
31 |
+
TextImageProjection,
|
32 |
+
TextImageTimeEmbedding,
|
33 |
+
TextTimeEmbedding,
|
34 |
+
TimestepEmbedding,
|
35 |
+
Timesteps,
|
36 |
+
)
|
37 |
+
from diffusers.models.modeling_utils import ModelMixin
|
38 |
+
|
39 |
+
from models.attention_processor import AttentionProcessor, AttnProcessor
|
40 |
+
|
41 |
+
from models.unet_2d_blocks import (
|
42 |
CrossAttnDownBlock2D,
|
43 |
CrossAttnUpBlock2D,
|
44 |
DownBlock2D,
|
45 |
UNetMidBlock2DCrossAttn,
|
46 |
+
UNetMidBlock2DSimpleCrossAttn,
|
47 |
UpBlock2D,
|
48 |
get_down_block,
|
49 |
get_up_block,
|
|
|
56 |
@dataclass
|
57 |
class UNet2DConditionOutput(BaseOutput):
|
58 |
"""
|
59 |
+
The output of [`UNet2DConditionModel`].
|
60 |
+
|
61 |
Args:
|
62 |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
63 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
64 |
"""
|
65 |
|
66 |
+
sample: torch.FloatTensor = None
|
67 |
|
68 |
|
69 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
70 |
r"""
|
71 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
72 |
+
shaped output.
|
73 |
|
74 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
75 |
+
for all models (such as downloading or saving).
|
76 |
|
77 |
Parameters:
|
78 |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
79 |
Height and width of input/output sample.
|
80 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
81 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
82 |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
83 |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
84 |
Whether to flip the sin to cos in the time embedding.
|
85 |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
86 |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
87 |
The tuple of downsample blocks to use.
|
88 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
89 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
90 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
91 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
92 |
The tuple of upsample blocks to use.
|
93 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
94 |
+
Whether to include self-attention in the basic transformer blocks, see
|
95 |
+
[`~models.attention.BasicTransformerBlock`].
|
96 |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
97 |
The tuple of output channels for each block.
|
98 |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
|
|
100 |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
101 |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
102 |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
103 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
104 |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
105 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
106 |
+
The dimension of the cross attention features.
|
107 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
108 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
109 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
110 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
111 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
112 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
113 |
+
dimension to `cross_attention_dim`.
|
114 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
115 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
116 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
117 |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
118 |
+
num_attention_heads (`int`, *optional*):
|
119 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
120 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
121 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
122 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
123 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
124 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
125 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
126 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
127 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
128 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
129 |
+
Dimension for the timestep embeddings.
|
130 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
131 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
132 |
+
class conditioning with `class_embed_type` equal to `None`.
|
133 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
134 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
135 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
136 |
+
An optional override for the dimension of the projected time embedding.
|
137 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
138 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
139 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
140 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
141 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
142 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
143 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
144 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
145 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
146 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
147 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
148 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
149 |
+
embeddings with the class embeddings.
|
150 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
151 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
152 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
153 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
154 |
+
otherwise.
|
155 |
"""
|
156 |
|
157 |
_supports_gradient_checkpointing = True
|
|
|
171 |
"CrossAttnDownBlock2D",
|
172 |
"DownBlock2D",
|
173 |
),
|
174 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
175 |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
176 |
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
177 |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
178 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
179 |
downsample_padding: int = 1,
|
180 |
mid_block_scale_factor: float = 1,
|
181 |
act_fn: str = "silu",
|
182 |
+
norm_num_groups: Optional[int] = 32,
|
183 |
norm_eps: float = 1e-5,
|
184 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
185 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
186 |
+
encoder_hid_dim: Optional[int] = None,
|
187 |
+
encoder_hid_dim_type: Optional[str] = None,
|
188 |
attention_head_dim: Union[int, Tuple[int]] = 8,
|
189 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
190 |
dual_cross_attention: bool = False,
|
191 |
use_linear_projection: bool = False,
|
192 |
+
class_embed_type: Optional[str] = None,
|
193 |
+
addition_embed_type: Optional[str] = None,
|
194 |
+
addition_time_embed_dim: Optional[int] = None,
|
195 |
num_class_embeds: Optional[int] = None,
|
196 |
+
upcast_attention: bool = False,
|
197 |
+
resnet_time_scale_shift: str = "default",
|
198 |
+
resnet_skip_time_act: bool = False,
|
199 |
+
resnet_out_scale_factor: int = 1.0,
|
200 |
+
time_embedding_type: str = "positional",
|
201 |
+
time_embedding_dim: Optional[int] = None,
|
202 |
+
time_embedding_act_fn: Optional[str] = None,
|
203 |
+
timestep_post_act: Optional[str] = None,
|
204 |
+
time_cond_proj_dim: Optional[int] = None,
|
205 |
+
conv_in_kernel: int = 3,
|
206 |
+
conv_out_kernel: int = 3,
|
207 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
208 |
+
class_embeddings_concat: bool = False,
|
209 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
210 |
+
cross_attention_norm: Optional[str] = None,
|
211 |
+
addition_embed_type_num_heads=64,
|
212 |
):
|
213 |
super().__init__()
|
214 |
|
215 |
self.sample_size = sample_size
|
216 |
+
|
217 |
+
if num_attention_heads is not None:
|
218 |
+
raise ValueError(
|
219 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
220 |
+
)
|
221 |
+
|
222 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
223 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
224 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
225 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
226 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
227 |
+
# which is why we correct for the naming here.
|
228 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
229 |
+
|
230 |
+
# Check inputs
|
231 |
+
if len(down_block_types) != len(up_block_types):
|
232 |
+
raise ValueError(
|
233 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
234 |
+
)
|
235 |
+
|
236 |
+
if len(block_out_channels) != len(down_block_types):
|
237 |
+
raise ValueError(
|
238 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
239 |
+
)
|
240 |
+
|
241 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
242 |
+
raise ValueError(
|
243 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
244 |
+
)
|
245 |
+
|
246 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
247 |
+
raise ValueError(
|
248 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
249 |
+
)
|
250 |
+
|
251 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
257 |
+
raise ValueError(
|
258 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
259 |
+
)
|
260 |
+
|
261 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
262 |
+
raise ValueError(
|
263 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
264 |
+
)
|
265 |
|
266 |
# input
|
267 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
268 |
+
self.conv_in = nn.Conv2d(
|
269 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
270 |
+
)
|
271 |
|
272 |
# time
|
273 |
+
if time_embedding_type == "fourier":
|
274 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
275 |
+
if time_embed_dim % 2 != 0:
|
276 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
277 |
+
self.time_proj = GaussianFourierProjection(
|
278 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
279 |
+
)
|
280 |
+
timestep_input_dim = time_embed_dim
|
281 |
+
elif time_embedding_type == "positional":
|
282 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
283 |
+
|
284 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
285 |
+
timestep_input_dim = block_out_channels[0]
|
286 |
+
else:
|
287 |
+
raise ValueError(
|
288 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
289 |
+
)
|
290 |
+
|
291 |
+
self.time_embedding = TimestepEmbedding(
|
292 |
+
timestep_input_dim,
|
293 |
+
time_embed_dim,
|
294 |
+
act_fn=act_fn,
|
295 |
+
post_act_fn=timestep_post_act,
|
296 |
+
cond_proj_dim=time_cond_proj_dim,
|
297 |
+
)
|
298 |
|
299 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
300 |
+
encoder_hid_dim_type = "text_proj"
|
301 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
302 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
303 |
+
|
304 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
305 |
+
raise ValueError(
|
306 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
307 |
+
)
|
308 |
+
|
309 |
+
if encoder_hid_dim_type == "text_proj":
|
310 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
311 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
312 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
313 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
314 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
315 |
+
self.encoder_hid_proj = TextImageProjection(
|
316 |
+
text_embed_dim=encoder_hid_dim,
|
317 |
+
image_embed_dim=cross_attention_dim,
|
318 |
+
cross_attention_dim=cross_attention_dim,
|
319 |
+
)
|
320 |
+
elif encoder_hid_dim_type == "image_proj":
|
321 |
+
# Kandinsky 2.2
|
322 |
+
self.encoder_hid_proj = ImageProjection(
|
323 |
+
image_embed_dim=encoder_hid_dim,
|
324 |
+
cross_attention_dim=cross_attention_dim,
|
325 |
+
)
|
326 |
+
elif encoder_hid_dim_type is not None:
|
327 |
+
raise ValueError(
|
328 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
329 |
+
)
|
330 |
+
else:
|
331 |
+
self.encoder_hid_proj = None
|
332 |
|
333 |
# class embedding
|
334 |
+
if class_embed_type is None and num_class_embeds is not None:
|
335 |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
336 |
+
elif class_embed_type == "timestep":
|
337 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
338 |
+
elif class_embed_type == "identity":
|
339 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
340 |
+
elif class_embed_type == "projection":
|
341 |
+
if projection_class_embeddings_input_dim is None:
|
342 |
+
raise ValueError(
|
343 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
344 |
+
)
|
345 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
346 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
347 |
+
# 2. it projects from an arbitrary input dimension.
|
348 |
+
#
|
349 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
350 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
351 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
352 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
353 |
+
elif class_embed_type == "simple_projection":
|
354 |
+
if projection_class_embeddings_input_dim is None:
|
355 |
+
raise ValueError(
|
356 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
357 |
+
)
|
358 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
359 |
+
else:
|
360 |
+
self.class_embedding = None
|
361 |
+
|
362 |
+
if addition_embed_type == "text":
|
363 |
+
if encoder_hid_dim is not None:
|
364 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
365 |
+
else:
|
366 |
+
text_time_embedding_from_dim = cross_attention_dim
|
367 |
+
|
368 |
+
self.add_embedding = TextTimeEmbedding(
|
369 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
370 |
+
)
|
371 |
+
elif addition_embed_type == "text_image":
|
372 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
373 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
374 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
375 |
+
self.add_embedding = TextImageTimeEmbedding(
|
376 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
377 |
+
)
|
378 |
+
elif addition_embed_type == "text_time":
|
379 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
380 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
381 |
+
elif addition_embed_type == "image":
|
382 |
+
# Kandinsky 2.2
|
383 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
384 |
+
elif addition_embed_type == "image_hint":
|
385 |
+
# Kandinsky 2.2 ControlNet
|
386 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
387 |
+
elif addition_embed_type is not None:
|
388 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
389 |
+
|
390 |
+
if time_embedding_act_fn is None:
|
391 |
+
self.time_embed_act = None
|
392 |
+
else:
|
393 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
394 |
|
395 |
self.down_blocks = nn.ModuleList([])
|
|
|
396 |
self.up_blocks = nn.ModuleList([])
|
397 |
|
398 |
if isinstance(only_cross_attention, bool):
|
399 |
+
if mid_block_only_cross_attention is None:
|
400 |
+
mid_block_only_cross_attention = only_cross_attention
|
401 |
+
|
402 |
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
403 |
|
404 |
+
if mid_block_only_cross_attention is None:
|
405 |
+
mid_block_only_cross_attention = False
|
406 |
+
|
407 |
+
if isinstance(num_attention_heads, int):
|
408 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
409 |
+
|
410 |
if isinstance(attention_head_dim, int):
|
411 |
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
412 |
|
413 |
+
if isinstance(cross_attention_dim, int):
|
414 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
415 |
+
|
416 |
+
if isinstance(layers_per_block, int):
|
417 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
418 |
+
|
419 |
+
if isinstance(transformer_layers_per_block, int):
|
420 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
421 |
+
|
422 |
+
if class_embeddings_concat:
|
423 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
424 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
425 |
+
# regular time embeddings
|
426 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
427 |
+
else:
|
428 |
+
blocks_time_embed_dim = time_embed_dim
|
429 |
+
|
430 |
# down
|
431 |
output_channel = block_out_channels[0]
|
432 |
for i, down_block_type in enumerate(down_block_types):
|
|
|
436 |
|
437 |
down_block = get_down_block(
|
438 |
down_block_type,
|
439 |
+
num_layers=layers_per_block[i],
|
440 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
441 |
in_channels=input_channel,
|
442 |
out_channels=output_channel,
|
443 |
+
temb_channels=blocks_time_embed_dim,
|
444 |
add_downsample=not is_final_block,
|
445 |
resnet_eps=norm_eps,
|
446 |
resnet_act_fn=act_fn,
|
447 |
resnet_groups=norm_num_groups,
|
448 |
+
cross_attention_dim=cross_attention_dim[i],
|
449 |
+
num_attention_heads=num_attention_heads[i],
|
450 |
downsample_padding=downsample_padding,
|
451 |
dual_cross_attention=dual_cross_attention,
|
452 |
use_linear_projection=use_linear_projection,
|
453 |
only_cross_attention=only_cross_attention[i],
|
454 |
+
upcast_attention=upcast_attention,
|
455 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
456 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
457 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
458 |
+
cross_attention_norm=cross_attention_norm,
|
459 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
460 |
)
|
461 |
self.down_blocks.append(down_block)
|
462 |
|
463 |
# mid
|
464 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
465 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
466 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
467 |
+
in_channels=block_out_channels[-1],
|
468 |
+
temb_channels=blocks_time_embed_dim,
|
469 |
+
resnet_eps=norm_eps,
|
470 |
+
resnet_act_fn=act_fn,
|
471 |
+
output_scale_factor=mid_block_scale_factor,
|
472 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
473 |
+
cross_attention_dim=cross_attention_dim[-1],
|
474 |
+
num_attention_heads=num_attention_heads[-1],
|
475 |
+
resnet_groups=norm_num_groups,
|
476 |
+
dual_cross_attention=dual_cross_attention,
|
477 |
+
use_linear_projection=use_linear_projection,
|
478 |
+
upcast_attention=upcast_attention,
|
479 |
+
)
|
480 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
481 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
482 |
+
in_channels=block_out_channels[-1],
|
483 |
+
temb_channels=blocks_time_embed_dim,
|
484 |
+
resnet_eps=norm_eps,
|
485 |
+
resnet_act_fn=act_fn,
|
486 |
+
output_scale_factor=mid_block_scale_factor,
|
487 |
+
cross_attention_dim=cross_attention_dim[-1],
|
488 |
+
attention_head_dim=attention_head_dim[-1],
|
489 |
+
resnet_groups=norm_num_groups,
|
490 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
491 |
+
skip_time_act=resnet_skip_time_act,
|
492 |
+
only_cross_attention=mid_block_only_cross_attention,
|
493 |
+
cross_attention_norm=cross_attention_norm,
|
494 |
+
)
|
495 |
+
elif mid_block_type is None:
|
496 |
+
self.mid_block = None
|
497 |
+
else:
|
498 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
499 |
|
500 |
# count how many layers upsample the images
|
501 |
self.num_upsamplers = 0
|
502 |
|
503 |
# up
|
504 |
reversed_block_out_channels = list(reversed(block_out_channels))
|
505 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
506 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
507 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
508 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
509 |
only_cross_attention = list(reversed(only_cross_attention))
|
510 |
+
|
511 |
output_channel = reversed_block_out_channels[0]
|
512 |
for i, up_block_type in enumerate(up_block_types):
|
513 |
is_final_block = i == len(block_out_channels) - 1
|
|
|
525 |
|
526 |
up_block = get_up_block(
|
527 |
up_block_type,
|
528 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
529 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
530 |
in_channels=input_channel,
|
531 |
out_channels=output_channel,
|
532 |
prev_output_channel=prev_output_channel,
|
533 |
+
temb_channels=blocks_time_embed_dim,
|
534 |
add_upsample=add_upsample,
|
535 |
resnet_eps=norm_eps,
|
536 |
resnet_act_fn=act_fn,
|
537 |
resnet_groups=norm_num_groups,
|
538 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
539 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
540 |
dual_cross_attention=dual_cross_attention,
|
541 |
use_linear_projection=use_linear_projection,
|
542 |
only_cross_attention=only_cross_attention[i],
|
543 |
+
upcast_attention=upcast_attention,
|
544 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
545 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
546 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
547 |
+
cross_attention_norm=cross_attention_norm,
|
548 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
549 |
)
|
550 |
self.up_blocks.append(up_block)
|
551 |
prev_output_channel = output_channel
|
552 |
|
553 |
# out
|
554 |
+
if norm_num_groups is not None:
|
555 |
+
self.conv_norm_out = nn.GroupNorm(
|
556 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
)
|
558 |
+
|
559 |
+
self.conv_act = get_activation(act_fn)
|
560 |
+
|
561 |
+
else:
|
562 |
+
self.conv_norm_out = None
|
563 |
+
self.conv_act = None
|
564 |
+
|
565 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
566 |
+
self.conv_out = nn.Conv2d(
|
567 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
568 |
+
)
|
569 |
+
|
570 |
+
@property
|
571 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
572 |
+
r"""
|
573 |
+
Returns:
|
574 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
575 |
+
indexed by its weight name.
|
576 |
+
"""
|
577 |
+
# set recursively
|
578 |
+
processors = {}
|
579 |
+
|
580 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
581 |
+
if hasattr(module, "set_processor"):
|
582 |
+
processors[f"{name}.processor"] = module.processor
|
583 |
+
|
584 |
+
for sub_name, child in module.named_children():
|
585 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
586 |
+
|
587 |
+
return processors
|
588 |
+
|
589 |
+
for name, module in self.named_children():
|
590 |
+
fn_recursive_add_processors(name, module, processors)
|
591 |
+
|
592 |
+
return processors
|
593 |
+
|
594 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
595 |
+
r"""
|
596 |
+
Sets the attention processor to use to compute attention.
|
597 |
+
|
598 |
+
Parameters:
|
599 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
600 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
601 |
+
for **all** `Attention` layers.
|
602 |
+
|
603 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
604 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
605 |
+
|
606 |
+
"""
|
607 |
+
count = len(self.attn_processors.keys())
|
608 |
+
|
609 |
+
if isinstance(processor, dict) and len(processor) != count:
|
610 |
raise ValueError(
|
611 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
612 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
613 |
)
|
614 |
|
615 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
616 |
+
if hasattr(module, "set_processor"):
|
617 |
+
if not isinstance(processor, dict):
|
618 |
+
module.set_processor(processor)
|
619 |
+
else:
|
620 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
621 |
+
|
622 |
+
for sub_name, child in module.named_children():
|
623 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
624 |
+
|
625 |
+
for name, module in self.named_children():
|
626 |
+
fn_recursive_attn_processor(name, module, processor)
|
627 |
+
|
628 |
+
def set_default_attn_processor(self):
|
629 |
+
"""
|
630 |
+
Disables custom attention processors and sets the default attention implementation.
|
631 |
+
"""
|
632 |
+
self.set_attn_processor(AttnProcessor())
|
633 |
+
|
634 |
+
def set_attention_slice(self, slice_size):
|
635 |
+
r"""
|
636 |
+
Enable sliced attention computation.
|
637 |
+
|
638 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
639 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
640 |
+
|
641 |
+
Args:
|
642 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
643 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
644 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
645 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
646 |
+
must be a multiple of `slice_size`.
|
647 |
+
"""
|
648 |
+
sliceable_head_dims = []
|
649 |
+
|
650 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
651 |
+
if hasattr(module, "set_attention_slice"):
|
652 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
653 |
+
|
654 |
+
for child in module.children():
|
655 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
656 |
+
|
657 |
+
# retrieve number of attention layers
|
658 |
+
for module in self.children():
|
659 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
660 |
+
|
661 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
662 |
+
|
663 |
+
if slice_size == "auto":
|
664 |
+
# half the attention head size is usually a good trade-off between
|
665 |
+
# speed and memory
|
666 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
667 |
+
elif slice_size == "max":
|
668 |
+
# make smallest slice possible
|
669 |
+
slice_size = num_sliceable_layers * [1]
|
670 |
|
671 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
672 |
|
673 |
+
if len(slice_size) != len(sliceable_head_dims):
|
674 |
+
raise ValueError(
|
675 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
676 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
677 |
+
)
|
678 |
+
|
679 |
+
for i in range(len(slice_size)):
|
680 |
+
size = slice_size[i]
|
681 |
+
dim = sliceable_head_dims[i]
|
682 |
+
if size is not None and size > dim:
|
683 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
684 |
|
685 |
+
# Recursively walk through all the children.
|
686 |
+
# Any children which exposes the set_attention_slice method
|
687 |
+
# gets the message
|
688 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
689 |
+
if hasattr(module, "set_attention_slice"):
|
690 |
+
module.set_attention_slice(slice_size.pop())
|
691 |
|
692 |
+
for child in module.children():
|
693 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
694 |
|
695 |
+
reversed_slice_size = list(reversed(slice_size))
|
696 |
+
for module in self.children():
|
697 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
698 |
|
699 |
def _set_gradient_checkpointing(self, module, value=False):
|
700 |
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
|
|
706 |
timestep: Union[torch.Tensor, float, int],
|
707 |
encoder_hidden_states: torch.Tensor,
|
708 |
class_labels: Optional[torch.Tensor] = None,
|
709 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
710 |
+
attention_mask: Optional[torch.Tensor] = None,
|
711 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
712 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
713 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
714 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
715 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
716 |
return_dict: bool = True,
|
717 |
) -> Union[UNet2DConditionOutput, Tuple]:
|
718 |
r"""
|
719 |
+
The [`UNet2DConditionModel`] forward method.
|
720 |
+
|
721 |
Args:
|
722 |
+
sample (`torch.FloatTensor`):
|
723 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
724 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
725 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
726 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
727 |
+
encoder_attention_mask (`torch.Tensor`):
|
728 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
729 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
730 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
731 |
return_dict (`bool`, *optional*, defaults to `True`):
|
732 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
733 |
+
tuple.
|
734 |
+
cross_attention_kwargs (`dict`, *optional*):
|
735 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
736 |
+
added_cond_kwargs: (`dict`, *optional*):
|
737 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
738 |
+
are passed along to the UNet blocks.
|
739 |
|
740 |
Returns:
|
741 |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
742 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
743 |
+
a `tuple` is returned where the first element is the sample tensor.
|
744 |
"""
|
745 |
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
746 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
747 |
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
748 |
# on the fly if necessary.
|
749 |
default_overall_up_factor = 2**self.num_upsamplers
|
|
|
756 |
logger.info("Forward upsample size to force interpolation output size.")
|
757 |
forward_upsample_size = True
|
758 |
|
759 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
760 |
+
# expects mask of shape:
|
761 |
+
# [batch, key_tokens]
|
762 |
+
# adds singleton query_tokens dimension:
|
763 |
+
# [batch, 1, key_tokens]
|
764 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
765 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
766 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
767 |
+
if attention_mask is not None:
|
768 |
+
# assume that mask is expressed as:
|
769 |
+
# (1 = keep, 0 = discard)
|
770 |
+
# convert mask into a bias that can be added to attention scores:
|
771 |
+
# (keep = +0, discard = -10000.0)
|
772 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
773 |
+
attention_mask = attention_mask.unsqueeze(1)
|
774 |
+
|
775 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
776 |
+
if encoder_attention_mask is not None:
|
777 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
778 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
779 |
+
|
780 |
# 0. center input if necessary
|
781 |
if self.config.center_input_sample:
|
782 |
sample = 2 * sample - 1.0
|
|
|
785 |
timesteps = timestep
|
786 |
if not torch.is_tensor(timesteps):
|
787 |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
788 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
789 |
+
is_mps = sample.device.type == "mps"
|
790 |
+
if isinstance(timestep, float):
|
791 |
+
dtype = torch.float32 if is_mps else torch.float64
|
792 |
+
else:
|
793 |
+
dtype = torch.int32 if is_mps else torch.int64
|
794 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
795 |
+
elif len(timesteps.shape) == 0:
|
796 |
timesteps = timesteps[None].to(sample.device)
|
797 |
|
798 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
|
800 |
|
801 |
t_emb = self.time_proj(timesteps)
|
802 |
|
803 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
804 |
# but time_embedding might actually be running in fp16. so we need to cast here.
|
805 |
# there might be better ways to encapsulate this.
|
806 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
807 |
+
|
808 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
809 |
+
aug_emb = None
|
810 |
|
811 |
+
if self.class_embedding is not None:
|
812 |
if class_labels is None:
|
813 |
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
|
|
|
|
814 |
|
815 |
+
if self.config.class_embed_type == "timestep":
|
816 |
+
class_labels = self.time_proj(class_labels)
|
817 |
+
|
818 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
819 |
+
# there might be better ways to encapsulate this.
|
820 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
821 |
+
|
822 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
823 |
+
|
824 |
+
if self.config.class_embeddings_concat:
|
825 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
826 |
+
else:
|
827 |
+
emb = emb + class_emb
|
828 |
+
|
829 |
+
if self.config.addition_embed_type == "text":
|
830 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
831 |
+
elif self.config.addition_embed_type == "text_image":
|
832 |
+
# Kandinsky 2.1 - style
|
833 |
+
if "image_embeds" not in added_cond_kwargs:
|
834 |
+
raise ValueError(
|
835 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
836 |
+
)
|
837 |
+
|
838 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
839 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
840 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
841 |
+
elif self.config.addition_embed_type == "text_time":
|
842 |
+
if "text_embeds" not in added_cond_kwargs:
|
843 |
+
raise ValueError(
|
844 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
845 |
+
)
|
846 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
847 |
+
if "time_ids" not in added_cond_kwargs:
|
848 |
+
raise ValueError(
|
849 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
850 |
+
)
|
851 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
852 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
853 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
854 |
+
|
855 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
856 |
+
add_embeds = add_embeds.to(emb.dtype)
|
857 |
+
aug_emb = self.add_embedding(add_embeds)
|
858 |
+
elif self.config.addition_embed_type == "image":
|
859 |
+
# Kandinsky 2.2 - style
|
860 |
+
if "image_embeds" not in added_cond_kwargs:
|
861 |
+
raise ValueError(
|
862 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
863 |
+
)
|
864 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
865 |
+
aug_emb = self.add_embedding(image_embs)
|
866 |
+
elif self.config.addition_embed_type == "image_hint":
|
867 |
+
# Kandinsky 2.2 - style
|
868 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
869 |
+
raise ValueError(
|
870 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
871 |
+
)
|
872 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
873 |
+
hint = added_cond_kwargs.get("hint")
|
874 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
875 |
+
sample = torch.cat([sample, hint], dim=1)
|
876 |
+
|
877 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
878 |
+
|
879 |
+
if self.time_embed_act is not None:
|
880 |
+
emb = self.time_embed_act(emb)
|
881 |
+
|
882 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
883 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
884 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
885 |
+
# Kadinsky 2.1 - style
|
886 |
+
if "image_embeds" not in added_cond_kwargs:
|
887 |
+
raise ValueError(
|
888 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
889 |
+
)
|
890 |
+
|
891 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
892 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
893 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
894 |
+
# Kandinsky 2.2 - style
|
895 |
+
if "image_embeds" not in added_cond_kwargs:
|
896 |
+
raise ValueError(
|
897 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
898 |
+
)
|
899 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
900 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
901 |
# 2. pre-process
|
902 |
sample = self.conv_in(sample)
|
903 |
|
904 |
# 3. down
|
905 |
down_block_res_samples = (sample,)
|
906 |
for downsample_block in self.down_blocks:
|
907 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
908 |
+
sample, res_samples = downsample_block(
|
909 |
+
hidden_states=sample,
|
910 |
+
temb=emb,
|
911 |
+
encoder_hidden_states=encoder_hidden_states,
|
912 |
+
attention_mask=attention_mask,
|
913 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
914 |
+
encoder_attention_mask=encoder_attention_mask,
|
915 |
+
)
|
|
|
|
|
|
|
|
|
|
|
916 |
else:
|
|
|
|
|
917 |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
918 |
+
|
919 |
down_block_res_samples += res_samples
|
920 |
|
921 |
+
if down_block_additional_residuals is not None:
|
922 |
+
new_down_block_res_samples = ()
|
923 |
+
|
924 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
925 |
+
down_block_res_samples, down_block_additional_residuals
|
926 |
+
):
|
927 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
928 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
929 |
+
|
930 |
+
down_block_res_samples = new_down_block_res_samples
|
931 |
+
|
932 |
# 4. mid
|
933 |
+
if self.mid_block is not None:
|
934 |
+
sample = self.mid_block(
|
935 |
+
sample,
|
936 |
+
emb,
|
937 |
+
encoder_hidden_states=encoder_hidden_states,
|
938 |
+
attention_mask=attention_mask,
|
939 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
940 |
+
encoder_attention_mask=encoder_attention_mask,
|
941 |
+
)
|
942 |
+
|
943 |
+
if mid_block_additional_residual is not None:
|
944 |
+
sample = sample + mid_block_additional_residual
|
945 |
|
946 |
# 5. up
|
947 |
for i, upsample_block in enumerate(self.up_blocks):
|
|
|
955 |
if not is_final_block and forward_upsample_size:
|
956 |
upsample_size = down_block_res_samples[-1].shape[2:]
|
957 |
|
958 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
959 |
+
sample = upsample_block(
|
960 |
+
hidden_states=sample,
|
961 |
+
temb=emb,
|
962 |
+
res_hidden_states_tuple=res_samples,
|
963 |
+
encoder_hidden_states=encoder_hidden_states,
|
964 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
965 |
+
upsample_size=upsample_size,
|
966 |
+
attention_mask=attention_mask,
|
967 |
+
encoder_attention_mask=encoder_attention_mask,
|
968 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
969 |
else:
|
|
|
|
|
|
|
970 |
sample = upsample_block(
|
971 |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
972 |
)
|
973 |
+
|
974 |
# 6. post-process
|
975 |
+
if self.conv_norm_out:
|
976 |
+
sample = self.conv_norm_out(sample)
|
977 |
+
sample = self.conv_act(sample)
|
978 |
sample = self.conv_out(sample)
|
979 |
|
980 |
if not return_dict:
|
requirements.txt
CHANGED
@@ -6,4 +6,4 @@ transformers==4.26.0
|
|
6 |
numpy==1.24.2
|
7 |
seaborn==0.12.2
|
8 |
accelerate==0.16.0
|
9 |
-
scikit-learn==
|
|
|
6 |
numpy==1.24.2
|
7 |
seaborn==0.12.2
|
8 |
accelerate==0.16.0
|
9 |
+
scikit-learn==1.1.3
|
utils/attention_utils.py
CHANGED
@@ -7,25 +7,44 @@ import torch
|
|
7 |
import torchvision
|
8 |
|
9 |
from utils.richtext_utils import seed_everything
|
10 |
-
from sklearn.cluster import SpectralClustering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
SelfAttentionLayers = [
|
13 |
-
'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
|
14 |
-
'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
|
15 |
'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
16 |
-
'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
17 |
'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
18 |
'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
19 |
'mid_block.attentions.0.transformer_blocks.0.attn1',
|
20 |
'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
21 |
'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
22 |
'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
|
23 |
-
'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
24 |
'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
25 |
-
'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
|
26 |
-
'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
|
27 |
-
'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
|
28 |
-
'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
|
29 |
]
|
30 |
|
31 |
|
@@ -48,6 +67,50 @@ CrossAttentionLayers = [
|
|
48 |
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
|
49 |
]
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def split_attention_maps_over_steps(attention_maps):
|
53 |
r"""Function for splitting attention maps over steps.
|
@@ -75,8 +138,233 @@ def split_attention_maps_over_steps(attention_maps):
|
|
75 |
return attention_maps_cond, attention_maps_uncond
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None):
|
79 |
-
atten_names = ['presoftmax', 'postsoftmax', 'postsoftmax_erosion']
|
80 |
for i, attn_map in enumerate(atten_map_list):
|
81 |
n_obj = len(attn_map)
|
82 |
plt.figure()
|
@@ -88,7 +376,7 @@ def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=N
|
|
88 |
fig.set_figheight(3)
|
89 |
fig.set_figwidth(3*n_obj+0.1)
|
90 |
|
91 |
-
cmap = plt.get_cmap('
|
92 |
|
93 |
vmax = 0
|
94 |
vmin = 1
|
@@ -117,18 +405,22 @@ def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=N
|
|
117 |
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
|
118 |
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
119 |
fig.colorbar(sm, cax=axs[-1])
|
|
|
|
|
|
|
120 |
canvas = fig.canvas
|
121 |
canvas.draw()
|
122 |
width, height = canvas.get_width_height()
|
123 |
img = np.frombuffer(canvas.tostring_rgb(),
|
124 |
dtype='uint8').reshape((height, width, 3))
|
125 |
-
|
126 |
-
|
127 |
-
plt.close()
|
128 |
return img
|
129 |
|
130 |
|
131 |
-
def
|
|
|
132 |
r"""Function to visualize attention maps.
|
133 |
Args:
|
134 |
save_dir (str): Path to save attention maps
|
@@ -175,11 +467,11 @@ def get_token_maps_deprecated(attention_maps, save_dir, width, height, obj_token
|
|
175 |
else:
|
176 |
obj_attention_map = attention_ind[:, :, :, obj_token].max(-1, True)[
|
177 |
0].permute([3, 0, 1, 2])
|
|
|
178 |
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width),
|
179 |
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True)
|
180 |
attention_maps[obj_id].append(obj_attention_map)
|
181 |
|
182 |
-
# average attention maps over steps
|
183 |
attention_maps_averaged = []
|
184 |
for obj_id, obj_token in enumerate(obj_tokens):
|
185 |
if obj_id == len(obj_tokens) - 1:
|
@@ -189,27 +481,114 @@ def get_token_maps_deprecated(attention_maps, save_dir, width, height, obj_token
|
|
189 |
attention_maps_averaged.append(
|
190 |
torch.cat(attention_maps[obj_id]).mean(0))
|
191 |
|
192 |
-
# normalize attention maps into [0, 1]
|
193 |
attention_maps_averaged_normalized = []
|
194 |
attention_maps_averaged_sum = torch.cat(attention_maps_averaged).sum(0)
|
195 |
for obj_id, obj_token in enumerate(obj_tokens):
|
196 |
attention_maps_averaged_normalized.append(
|
197 |
attention_maps_averaged[obj_id]/attention_maps_averaged_sum)
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
token_maps_vis = plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
|
206 |
-
obj_tokens, save_dir, seed, tokens_vis)
|
207 |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
|
208 |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
|
209 |
-
|
|
|
210 |
|
211 |
|
212 |
-
def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, height, obj_tokens,
|
213 |
preprocess=False, segment_threshold=0.3, num_segments=5, return_vis=False, save_attn=False):
|
214 |
r"""Function to visualize attention maps.
|
215 |
Args:
|
@@ -218,15 +597,20 @@ def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, heigh
|
|
218 |
sampler_order (int): Sampler order
|
219 |
"""
|
220 |
|
221 |
-
# create the segmentation mask using self-attention maps
|
222 |
resolution = 32
|
|
|
|
|
|
|
223 |
attn_maps_1024 = {8: [], 16: [], 32: [], 64: []}
|
224 |
for attn_map in selfattn_maps.values():
|
225 |
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
|
226 |
if resolution_map != resolution:
|
227 |
continue
|
|
|
|
|
|
|
228 |
attn_map = attn_map.reshape(
|
229 |
-
1, resolution_map, resolution_map, resolution_map**2).permute([3, 0, 1, 2])
|
230 |
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
|
231 |
mode='bicubic', antialias=True)
|
232 |
attn_maps_1024[resolution_map].append(attn_map.permute([1, 2, 3, 0]).reshape(
|
@@ -237,7 +621,16 @@ def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, heigh
|
|
237 |
print('saving self-attention maps...', attn_maps_1024.shape)
|
238 |
torch.save(torch.from_numpy(attn_maps_1024),
|
239 |
'results/maps/selfattn_maps.pth')
|
240 |
-
seed_everything(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
sc = SpectralClustering(num_segments, affinity='precomputed', n_init=100,
|
242 |
assign_labels='kmeans')
|
243 |
clusters = sc.fit_predict(attn_maps_1024)
|
@@ -245,6 +638,8 @@ def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, heigh
|
|
245 |
fig = plt.figure()
|
246 |
plt.imshow(clusters)
|
247 |
plt.axis('off')
|
|
|
|
|
248 |
if return_vis:
|
249 |
canvas = fig.canvas
|
250 |
canvas.draw()
|
@@ -258,18 +653,16 @@ def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, heigh
|
|
258 |
cross_attn_maps_1024 = []
|
259 |
for attn_map in crossattn_maps.values():
|
260 |
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
|
|
|
|
|
261 |
attn_map = attn_map.reshape(
|
262 |
-
1, resolution_map, resolution_map, -1).permute([0, 3, 1, 2])
|
263 |
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
|
264 |
mode='bicubic', antialias=True)
|
265 |
cross_attn_maps_1024.append(attn_map.permute([0, 2, 3, 1]))
|
266 |
|
267 |
cross_attn_maps_1024 = torch.cat(
|
268 |
cross_attn_maps_1024).mean(0).cpu().numpy()
|
269 |
-
if save_attn:
|
270 |
-
print('saving cross-attention maps...', cross_attn_maps_1024.shape)
|
271 |
-
torch.save(torch.from_numpy(cross_attn_maps_1024),
|
272 |
-
'results/maps/crossattn_maps.pth')
|
273 |
normalized_span_maps = []
|
274 |
for token_ids in obj_tokens:
|
275 |
span_token_maps = cross_attn_maps_1024[:, :, token_ids.numpy()]
|
@@ -277,7 +670,8 @@ def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, heigh
|
|
277 |
for i in range(span_token_maps.shape[-1]):
|
278 |
curr_noun_map = span_token_maps[:, :, i]
|
279 |
normalized_span_map[:, :, i] = (
|
280 |
-
curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
|
|
|
281 |
normalized_span_maps.append(normalized_span_map)
|
282 |
foreground_token_maps = [np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze(
|
283 |
) for normalized_span_map in normalized_span_maps]
|
@@ -308,8 +702,19 @@ def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, heigh
|
|
308 |
0) for token_map in resized_token_maps]
|
309 |
foreground_token_maps = [token_map[None, :, :]
|
310 |
for token_map in foreground_token_maps]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
token_maps_vis = plot_attention_maps([foreground_token_maps, resized_token_maps], obj_tokens,
|
312 |
-
save_dir,
|
313 |
resized_token_maps = [token_map.unsqueeze(1).repeat(
|
314 |
[1, 4, 1, 1]).to(attn_map.dtype).cuda() for token_map in resized_token_maps]
|
315 |
if return_vis:
|
|
|
7 |
import torchvision
|
8 |
|
9 |
from utils.richtext_utils import seed_everything
|
10 |
+
from sklearn.cluster import KMeans, SpectralClustering
|
11 |
+
|
12 |
+
# SelfAttentionLayers = [
|
13 |
+
# # 'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
|
14 |
+
# # 'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
|
15 |
+
# 'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
16 |
+
# # 'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
17 |
+
# 'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
18 |
+
# 'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
19 |
+
# 'mid_block.attentions.0.transformer_blocks.0.attn1',
|
20 |
+
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
21 |
+
# 'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
22 |
+
# 'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
|
23 |
+
# # 'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
24 |
+
# 'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
25 |
+
# # 'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
|
26 |
+
# # 'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
|
27 |
+
# # 'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
|
28 |
+
# # 'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
|
29 |
+
# ]
|
30 |
|
31 |
SelfAttentionLayers = [
|
32 |
+
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
|
33 |
+
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
|
34 |
'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
35 |
+
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
36 |
'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
37 |
'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
38 |
'mid_block.attentions.0.transformer_blocks.0.attn1',
|
39 |
'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
|
40 |
'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
|
41 |
'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
|
42 |
+
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
|
43 |
'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
|
44 |
+
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
|
45 |
+
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
|
46 |
+
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
|
47 |
+
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
|
48 |
]
|
49 |
|
50 |
|
|
|
67 |
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
|
68 |
]
|
69 |
|
70 |
+
# CrossAttentionLayers = [
|
71 |
+
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2',
|
72 |
+
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2',
|
73 |
+
# 'down_blocks.1.attentions.0.transformer_blocks.0.attn2',
|
74 |
+
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2',
|
75 |
+
# 'down_blocks.2.attentions.0.transformer_blocks.0.attn2',
|
76 |
+
# 'down_blocks.2.attentions.1.transformer_blocks.0.attn2',
|
77 |
+
# 'mid_block.attentions.0.transformer_blocks.0.attn2',
|
78 |
+
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn2',
|
79 |
+
# 'up_blocks.1.attentions.1.transformer_blocks.0.attn2',
|
80 |
+
# 'up_blocks.1.attentions.2.transformer_blocks.0.attn2',
|
81 |
+
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2',
|
82 |
+
# 'up_blocks.2.attentions.1.transformer_blocks.0.attn2',
|
83 |
+
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2',
|
84 |
+
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2',
|
85 |
+
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2',
|
86 |
+
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
|
87 |
+
# ]
|
88 |
+
|
89 |
+
# CrossAttentionLayers_XL = [
|
90 |
+
# 'up_blocks.0.attentions.0.transformer_blocks.1.attn2',
|
91 |
+
# 'up_blocks.0.attentions.0.transformer_blocks.2.attn2',
|
92 |
+
# 'up_blocks.0.attentions.0.transformer_blocks.3.attn2',
|
93 |
+
# 'up_blocks.0.attentions.0.transformer_blocks.4.attn2',
|
94 |
+
# 'up_blocks.0.attentions.0.transformer_blocks.5.attn2',
|
95 |
+
# 'up_blocks.0.attentions.0.transformer_blocks.6.attn2',
|
96 |
+
# 'up_blocks.0.attentions.0.transformer_blocks.7.attn2',
|
97 |
+
# ]
|
98 |
+
CrossAttentionLayers_XL = [
|
99 |
+
'down_blocks.2.attentions.1.transformer_blocks.3.attn2',
|
100 |
+
'down_blocks.2.attentions.1.transformer_blocks.4.attn2',
|
101 |
+
'mid_block.attentions.0.transformer_blocks.0.attn2',
|
102 |
+
'mid_block.attentions.0.transformer_blocks.1.attn2',
|
103 |
+
'mid_block.attentions.0.transformer_blocks.2.attn2',
|
104 |
+
'mid_block.attentions.0.transformer_blocks.3.attn2',
|
105 |
+
'up_blocks.0.attentions.0.transformer_blocks.1.attn2',
|
106 |
+
'up_blocks.0.attentions.0.transformer_blocks.2.attn2',
|
107 |
+
'up_blocks.0.attentions.0.transformer_blocks.3.attn2',
|
108 |
+
'up_blocks.0.attentions.0.transformer_blocks.4.attn2',
|
109 |
+
'up_blocks.0.attentions.0.transformer_blocks.5.attn2',
|
110 |
+
'up_blocks.0.attentions.0.transformer_blocks.6.attn2',
|
111 |
+
'up_blocks.0.attentions.0.transformer_blocks.7.attn2',
|
112 |
+
'up_blocks.1.attentions.0.transformer_blocks.0.attn2'
|
113 |
+
]
|
114 |
|
115 |
def split_attention_maps_over_steps(attention_maps):
|
116 |
r"""Function for splitting attention maps over steps.
|
|
|
138 |
return attention_maps_cond, attention_maps_uncond
|
139 |
|
140 |
|
141 |
+
def save_attention_heatmaps(attention_maps, tokens_vis, save_dir, prefix):
|
142 |
+
r"""Function to plot heatmaps for attention maps.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
attention_maps (dict): Dictionary of attention maps per layer
|
146 |
+
save_dir (str): Directory to save attention maps
|
147 |
+
prefix (str): Filename prefix for html files
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
Heatmaps, one per sample.
|
151 |
+
"""
|
152 |
+
|
153 |
+
html_names = []
|
154 |
+
|
155 |
+
idx = 0
|
156 |
+
html_list = []
|
157 |
+
|
158 |
+
for layer in attention_maps.keys():
|
159 |
+
if idx == 0:
|
160 |
+
# import ipdb;ipdb.set_trace()
|
161 |
+
# create a set of html files.
|
162 |
+
|
163 |
+
batch_size = attention_maps[layer].shape[0]
|
164 |
+
|
165 |
+
for sample_num in range(batch_size):
|
166 |
+
# html path
|
167 |
+
html_rel_path = os.path.join('sample_{}'.format(
|
168 |
+
sample_num), '{}.html'.format(prefix))
|
169 |
+
html_names.append(html_rel_path)
|
170 |
+
html_path = os.path.join(save_dir, html_rel_path)
|
171 |
+
os.makedirs(os.path.dirname(html_path), exist_ok=True)
|
172 |
+
html_list.append(open(html_path, 'wt'))
|
173 |
+
html_list[sample_num].write(
|
174 |
+
'<html><head></head><body><table>\n')
|
175 |
+
|
176 |
+
for sample_num in range(batch_size):
|
177 |
+
|
178 |
+
save_path = os.path.join(save_dir, 'sample_{}'.format(sample_num),
|
179 |
+
prefix, 'layer_{}'.format(layer)) + '.jpg'
|
180 |
+
Path(os.path.dirname(save_path)).mkdir(parents=True, exist_ok=True)
|
181 |
+
|
182 |
+
layer_name = 'layer_{}'.format(layer)
|
183 |
+
html_list[sample_num].write(
|
184 |
+
f'<tr><td><h1>{layer_name}</h1></td></tr>\n')
|
185 |
+
|
186 |
+
prefix_stem = prefix.split('/')[-1]
|
187 |
+
relative_image_path = os.path.join(
|
188 |
+
prefix_stem, 'layer_{}'.format(layer)) + '.jpg'
|
189 |
+
html_list[sample_num].write(
|
190 |
+
f'<tr><td><img src=\"{relative_image_path}\"></td></tr>\n')
|
191 |
+
|
192 |
+
plt.figure()
|
193 |
+
plt.clf()
|
194 |
+
nrows = 2
|
195 |
+
ncols = 7
|
196 |
+
fig, axs = plt.subplots(nrows=nrows, ncols=ncols)
|
197 |
+
|
198 |
+
fig.set_figheight(8)
|
199 |
+
fig.set_figwidth(28.5)
|
200 |
+
|
201 |
+
# axs[0].set_aspect('equal')
|
202 |
+
# axs[1].set_aspect('equal')
|
203 |
+
# axs[2].set_aspect('equal')
|
204 |
+
# axs[3].set_aspect('equal')
|
205 |
+
# axs[4].set_aspect('equal')
|
206 |
+
# axs[5].set_aspect('equal')
|
207 |
+
|
208 |
+
cmap = plt.get_cmap('YlOrRd')
|
209 |
+
|
210 |
+
for rid in range(nrows):
|
211 |
+
for cid in range(ncols):
|
212 |
+
tid = rid*ncols + cid
|
213 |
+
# import ipdb;ipdb.set_trace()
|
214 |
+
attention_map_cur = attention_maps[layer][sample_num, :, :, tid].numpy(
|
215 |
+
)
|
216 |
+
vmax = float(attention_map_cur.max())
|
217 |
+
vmin = float(attention_map_cur.min())
|
218 |
+
sns.heatmap(
|
219 |
+
attention_map_cur, annot=False, cbar=False, ax=axs[rid, cid],
|
220 |
+
cmap=cmap, vmin=vmin, vmax=vmax
|
221 |
+
)
|
222 |
+
axs[rid, cid].set_xlabel(tokens_vis[tid])
|
223 |
+
|
224 |
+
# axs[0].set_xlabel('Self attention')
|
225 |
+
# axs[1].set_xlabel('Temporal attention')
|
226 |
+
# axs[2].set_xlabel('T5 text attention')
|
227 |
+
# axs[3].set_xlabel('CLIP text attention')
|
228 |
+
# axs[4].set_xlabel('CLIP image attention')
|
229 |
+
# axs[5].set_xlabel('Null text token')
|
230 |
+
|
231 |
+
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
|
232 |
+
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
233 |
+
# fig.colorbar(sm, cax=axs[6])
|
234 |
+
|
235 |
+
fig.tight_layout()
|
236 |
+
plt.savefig(save_path, dpi=64)
|
237 |
+
plt.close('all')
|
238 |
+
|
239 |
+
if idx == (len(attention_maps.keys()) - 1):
|
240 |
+
for sample_num in range(batch_size):
|
241 |
+
html_list[sample_num].write('</table></body></html>')
|
242 |
+
html_list[sample_num].close()
|
243 |
+
|
244 |
+
idx += 1
|
245 |
+
|
246 |
+
return html_names
|
247 |
+
|
248 |
+
|
249 |
+
def create_recursive_html_link(html_path, save_dir):
|
250 |
+
r"""Function for creating recursive html links.
|
251 |
+
If the path is dir1/dir2/dir3/*.html,
|
252 |
+
we create chained directories
|
253 |
+
-dir1
|
254 |
+
dir1.html (has links to all children)
|
255 |
+
-dir2
|
256 |
+
dir2.html (has links to all children)
|
257 |
+
-dir3
|
258 |
+
dir3.html
|
259 |
+
|
260 |
+
Args:
|
261 |
+
html_path (str): Path to html file.
|
262 |
+
save_dir (str): Save directory.
|
263 |
+
"""
|
264 |
+
|
265 |
+
html_path_split = os.path.splitext(html_path)[0].split('/')
|
266 |
+
if len(html_path_split) == 1:
|
267 |
+
return
|
268 |
+
|
269 |
+
# First create the root directory
|
270 |
+
root_dir = html_path_split[0]
|
271 |
+
child_dir = html_path_split[1]
|
272 |
+
|
273 |
+
cur_html_path = os.path.join(save_dir, '{}.html'.format(root_dir))
|
274 |
+
if os.path.exists(cur_html_path):
|
275 |
+
|
276 |
+
fp = open(cur_html_path, 'r')
|
277 |
+
lines_written = fp.readlines()
|
278 |
+
fp.close()
|
279 |
+
|
280 |
+
fp = open(cur_html_path, 'a+')
|
281 |
+
child_path = os.path.join(root_dir, f'{child_dir}.html')
|
282 |
+
line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n'
|
283 |
+
|
284 |
+
if line_to_write not in lines_written:
|
285 |
+
fp.write('<html><head></head><body><table>\n')
|
286 |
+
fp.write(line_to_write)
|
287 |
+
fp.write('</table></body></html>')
|
288 |
+
fp.close()
|
289 |
+
|
290 |
+
else:
|
291 |
+
|
292 |
+
fp = open(cur_html_path, 'w')
|
293 |
+
|
294 |
+
child_path = os.path.join(root_dir, f'{child_dir}.html')
|
295 |
+
line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n'
|
296 |
+
|
297 |
+
fp.write('<html><head></head><body><table>\n')
|
298 |
+
fp.write(line_to_write)
|
299 |
+
fp.write('</table></body></html>')
|
300 |
+
|
301 |
+
fp.close()
|
302 |
+
|
303 |
+
child_path = '/'.join(html_path.split('/')[1:])
|
304 |
+
save_dir = os.path.join(save_dir, root_dir)
|
305 |
+
create_recursive_html_link(child_path, save_dir)
|
306 |
+
|
307 |
+
|
308 |
+
def visualize_attention_maps(attention_maps_all, save_dir, width, height, tokens_vis):
|
309 |
+
r"""Function to visualize attention maps.
|
310 |
+
Args:
|
311 |
+
save_dir (str): Path to save attention maps
|
312 |
+
batch_size (int): Batch size
|
313 |
+
sampler_order (int): Sampler order
|
314 |
+
"""
|
315 |
+
|
316 |
+
rand_name = list(attention_maps_all.keys())[0]
|
317 |
+
nsteps = len(attention_maps_all[rand_name])
|
318 |
+
hw_ori = width * height
|
319 |
+
|
320 |
+
# html_path = save_dir + '.html'
|
321 |
+
text_input = save_dir.split('/')[-1]
|
322 |
+
# f = open(html_path, 'wt')
|
323 |
+
|
324 |
+
all_html_paths = []
|
325 |
+
|
326 |
+
for step_num in range(0, nsteps, 5):
|
327 |
+
|
328 |
+
# if cond_id == 'cond':
|
329 |
+
# attention_maps_cur = attention_maps_cond[step_num]
|
330 |
+
# else:
|
331 |
+
# attention_maps_cur = attention_maps_uncond[step_num]
|
332 |
+
|
333 |
+
attention_maps = dict()
|
334 |
+
|
335 |
+
for layer in attention_maps_all.keys():
|
336 |
+
|
337 |
+
attention_ind = attention_maps_all[layer][step_num].cpu()
|
338 |
+
|
339 |
+
# Attention maps are of shape [batch_size, nkeys, 77]
|
340 |
+
# since they are averaged out while collecting from hooks to save memory.
|
341 |
+
# Now split the heads from batch dimension
|
342 |
+
bs, hw, nclip = attention_ind.shape
|
343 |
+
down_ratio = np.sqrt(hw_ori // hw)
|
344 |
+
width_cur = int(width // down_ratio)
|
345 |
+
height_cur = int(height // down_ratio)
|
346 |
+
attention_ind = attention_ind.reshape(
|
347 |
+
bs, height_cur, width_cur, nclip)
|
348 |
+
|
349 |
+
attention_maps[layer] = attention_ind
|
350 |
+
|
351 |
+
# Obtain heatmaps corresponding to random heads and individual heads
|
352 |
+
|
353 |
+
html_names = save_attention_heatmaps(
|
354 |
+
attention_maps, tokens_vis, save_dir=save_dir, prefix='step_{}/attention_maps_cond'.format(
|
355 |
+
step_num)
|
356 |
+
)
|
357 |
+
|
358 |
+
# Write the logic for recursively creating pages
|
359 |
+
for html_name_cur in html_names:
|
360 |
+
all_html_paths.append(os.path.join(text_input, html_name_cur))
|
361 |
+
|
362 |
+
save_dir_root = '/'.join(save_dir.split('/')[0:-1])
|
363 |
+
for html_pth in all_html_paths:
|
364 |
+
create_recursive_html_link(html_pth, save_dir_root)
|
365 |
+
|
366 |
+
|
367 |
def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None):
|
|
|
368 |
for i, attn_map in enumerate(atten_map_list):
|
369 |
n_obj = len(attn_map)
|
370 |
plt.figure()
|
|
|
376 |
fig.set_figheight(3)
|
377 |
fig.set_figwidth(3*n_obj+0.1)
|
378 |
|
379 |
+
cmap = plt.get_cmap('YlOrRd')
|
380 |
|
381 |
vmax = 0
|
382 |
vmin = 1
|
|
|
405 |
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
|
406 |
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
407 |
fig.colorbar(sm, cax=axs[-1])
|
408 |
+
|
409 |
+
fig.tight_layout()
|
410 |
+
|
411 |
canvas = fig.canvas
|
412 |
canvas.draw()
|
413 |
width, height = canvas.get_width_height()
|
414 |
img = np.frombuffer(canvas.tostring_rgb(),
|
415 |
dtype='uint8').reshape((height, width, 3))
|
416 |
+
plt.savefig(os.path.join(
|
417 |
+
save_dir, 'average_seed%d_attn%d.jpg' % (seed, i)), dpi=100)
|
418 |
+
plt.close('all')
|
419 |
return img
|
420 |
|
421 |
|
422 |
+
def get_average_attention_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None,
|
423 |
+
preprocess=False):
|
424 |
r"""Function to visualize attention maps.
|
425 |
Args:
|
426 |
save_dir (str): Path to save attention maps
|
|
|
467 |
else:
|
468 |
obj_attention_map = attention_ind[:, :, :, obj_token].max(-1, True)[
|
469 |
0].permute([3, 0, 1, 2])
|
470 |
+
# obj_attention_map = attention_ind[:, :, :, obj_token].mean(-1, True).permute([3, 0, 1, 2])
|
471 |
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width),
|
472 |
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True)
|
473 |
attention_maps[obj_id].append(obj_attention_map)
|
474 |
|
|
|
475 |
attention_maps_averaged = []
|
476 |
for obj_id, obj_token in enumerate(obj_tokens):
|
477 |
if obj_id == len(obj_tokens) - 1:
|
|
|
481 |
attention_maps_averaged.append(
|
482 |
torch.cat(attention_maps[obj_id]).mean(0))
|
483 |
|
|
|
484 |
attention_maps_averaged_normalized = []
|
485 |
attention_maps_averaged_sum = torch.cat(attention_maps_averaged).sum(0)
|
486 |
for obj_id, obj_token in enumerate(obj_tokens):
|
487 |
attention_maps_averaged_normalized.append(
|
488 |
attention_maps_averaged[obj_id]/attention_maps_averaged_sum)
|
489 |
|
490 |
+
if obj_tokens[-1][0] != -1:
|
491 |
+
attention_maps_averaged_normalized = (
|
492 |
+
torch.cat(attention_maps_averaged)/0.001).softmax(0)
|
493 |
+
attention_maps_averaged_normalized = [
|
494 |
+
attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])]
|
495 |
+
|
496 |
+
if preprocess:
|
497 |
+
selem = square(5)
|
498 |
+
selem = square(3)
|
499 |
+
selem = square(1)
|
500 |
+
attention_maps_averaged_eroded = [erosion(skimage.img_as_float(
|
501 |
+
map[0].numpy()*255), selem) for map in attention_maps_averaged_normalized[:2]]
|
502 |
+
attention_maps_averaged_eroded = [(torch.from_numpy(map).unsqueeze(
|
503 |
+
0)/255. > 0.8).float() for map in attention_maps_averaged_eroded]
|
504 |
+
attention_maps_averaged_eroded.append(
|
505 |
+
1 - torch.cat(attention_maps_averaged_eroded).sum(0, True))
|
506 |
+
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized,
|
507 |
+
attention_maps_averaged_eroded], obj_tokens, save_dir, seed, tokens_vis)
|
508 |
+
attention_maps_averaged_eroded = [attn_mask.unsqueeze(1).repeat(
|
509 |
+
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_eroded]
|
510 |
+
return attention_maps_averaged_eroded
|
511 |
+
else:
|
512 |
+
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
|
513 |
+
obj_tokens, save_dir, seed, tokens_vis)
|
514 |
+
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
|
515 |
+
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
|
516 |
+
return attention_maps_averaged_normalized
|
517 |
+
|
518 |
+
|
519 |
+
def get_average_attention_maps_threshold(attention_maps, save_dir, width, height, obj_tokens, seed=0, threshold=0.02):
|
520 |
+
r"""Function to visualize attention maps.
|
521 |
+
Args:
|
522 |
+
save_dir (str): Path to save attention maps
|
523 |
+
batch_size (int): Batch size
|
524 |
+
sampler_order (int): Sampler order
|
525 |
+
"""
|
526 |
+
|
527 |
+
_EPS = 1e-8
|
528 |
+
# Split attention maps over steps
|
529 |
+
attention_maps_cond, _ = split_attention_maps_over_steps(
|
530 |
+
attention_maps
|
531 |
+
)
|
532 |
+
|
533 |
+
nsteps = len(attention_maps_cond)
|
534 |
+
hw_ori = width * height
|
535 |
+
|
536 |
+
attention_maps = []
|
537 |
+
for obj_token in obj_tokens:
|
538 |
+
attention_maps.append([])
|
539 |
+
|
540 |
+
# for each side prompt, get attention maps for all steps and all layers
|
541 |
+
for step_num in range(nsteps):
|
542 |
+
attention_maps_cur = attention_maps_cond[step_num]
|
543 |
+
for layer in attention_maps_cur.keys():
|
544 |
+
attention_ind = attention_maps_cur[layer].cpu()
|
545 |
+
bs, hw, nclip = attention_ind.shape
|
546 |
+
down_ratio = np.sqrt(hw_ori // hw)
|
547 |
+
width_cur = int(width // down_ratio)
|
548 |
+
height_cur = int(height // down_ratio)
|
549 |
+
attention_ind = attention_ind.reshape(
|
550 |
+
bs, height_cur, width_cur, nclip)
|
551 |
+
for obj_id, obj_token in enumerate(obj_tokens):
|
552 |
+
if attention_ind.shape[1] > width//2:
|
553 |
+
continue
|
554 |
+
if obj_token[0] != -1:
|
555 |
+
obj_attention_map = attention_ind[:, :, :,
|
556 |
+
obj_token].mean(-1, True).permute([3, 0, 1, 2])
|
557 |
+
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width),
|
558 |
+
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True)
|
559 |
+
attention_maps[obj_id].append(obj_attention_map)
|
560 |
+
|
561 |
+
# average of all steps and layers, thresholding
|
562 |
+
attention_maps_thres = []
|
563 |
+
attention_maps_averaged = []
|
564 |
+
for obj_id, obj_token in enumerate(obj_tokens):
|
565 |
+
if obj_token[0] != -1:
|
566 |
+
average_map = torch.cat(attention_maps[obj_id]).mean(0)
|
567 |
+
attention_maps_averaged.append(average_map)
|
568 |
+
attention_maps_thres.append((average_map > threshold).float())
|
569 |
+
|
570 |
+
# get the remaining region except for the original prompt
|
571 |
+
attention_maps_averaged_normalized = []
|
572 |
+
attention_maps_averaged_sum = torch.cat(attention_maps_thres).sum(0) + _EPS
|
573 |
+
for obj_id, obj_token in enumerate(obj_tokens):
|
574 |
+
if obj_token[0] != -1:
|
575 |
+
attention_maps_averaged_normalized.append(
|
576 |
+
attention_maps_thres[obj_id]/attention_maps_averaged_sum)
|
577 |
+
else:
|
578 |
+
attention_map_prev = torch.stack(
|
579 |
+
attention_maps_averaged_normalized).sum(0)
|
580 |
+
attention_maps_averaged_normalized.append(1.-attention_map_prev)
|
581 |
+
|
582 |
+
plot_attention_maps(
|
583 |
+
[attention_maps_averaged, attention_maps_averaged_normalized], save_dir, seed)
|
584 |
|
|
|
|
|
585 |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
|
586 |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
|
587 |
+
# attention_maps_averaged_normalized = attention_maps_averaged_normalized.unsqueeze(1).repeat([1, 4, 1, 1]).cuda()
|
588 |
+
return attention_maps_averaged_normalized
|
589 |
|
590 |
|
591 |
+
def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, height, obj_tokens, kmeans_seed=0, tokens_vis=None,
|
592 |
preprocess=False, segment_threshold=0.3, num_segments=5, return_vis=False, save_attn=False):
|
593 |
r"""Function to visualize attention maps.
|
594 |
Args:
|
|
|
597 |
sampler_order (int): Sampler order
|
598 |
"""
|
599 |
|
|
|
600 |
resolution = 32
|
601 |
+
# attn_maps_1024 = [attn_map for attn_map in selfattn_maps.values(
|
602 |
+
# ) if attn_map.shape[1] == resolution**2]
|
603 |
+
# attn_maps_1024 = torch.cat(attn_maps_1024).mean(0).cpu().numpy()
|
604 |
attn_maps_1024 = {8: [], 16: [], 32: [], 64: []}
|
605 |
for attn_map in selfattn_maps.values():
|
606 |
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
|
607 |
if resolution_map != resolution:
|
608 |
continue
|
609 |
+
# attn_map = torch.nn.functional.interpolate(rearrange(attn_map, '1 c (h w) -> 1 c h w', h=resolution_map), (resolution, resolution),
|
610 |
+
# mode='bicubic', antialias=True)
|
611 |
+
# attn_map = rearrange(attn_map, '1 (h w) a b -> 1 (a b) h w', h=resolution_map)
|
612 |
attn_map = attn_map.reshape(
|
613 |
+
1, resolution_map, resolution_map, resolution_map**2).permute([3, 0, 1, 2]).float()
|
614 |
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
|
615 |
mode='bicubic', antialias=True)
|
616 |
attn_maps_1024[resolution_map].append(attn_map.permute([1, 2, 3, 0]).reshape(
|
|
|
621 |
print('saving self-attention maps...', attn_maps_1024.shape)
|
622 |
torch.save(torch.from_numpy(attn_maps_1024),
|
623 |
'results/maps/selfattn_maps.pth')
|
624 |
+
seed_everything(kmeans_seed)
|
625 |
+
# import ipdb;ipdb.set_trace()
|
626 |
+
# kmeans = KMeans(n_clusters=num_segments,
|
627 |
+
# n_init=10).fit(attn_maps_1024)
|
628 |
+
# clusters = kmeans.labels_
|
629 |
+
# clusters = clusters.reshape(resolution, resolution)
|
630 |
+
# mesh = np.array(np.meshgrid(range(resolution), range(resolution), indexing='ij'), dtype=np.float32)/resolution
|
631 |
+
# dists = mesh.reshape(2, -1).T
|
632 |
+
# delta = 0.01
|
633 |
+
# spatial_sim = rbf_kernel(dists, dists)*delta
|
634 |
sc = SpectralClustering(num_segments, affinity='precomputed', n_init=100,
|
635 |
assign_labels='kmeans')
|
636 |
clusters = sc.fit_predict(attn_maps_1024)
|
|
|
638 |
fig = plt.figure()
|
639 |
plt.imshow(clusters)
|
640 |
plt.axis('off')
|
641 |
+
plt.savefig(os.path.join(save_dir, 'segmentation_k%d_seed%d.jpg' % (num_segments, kmeans_seed)),
|
642 |
+
bbox_inches='tight', pad_inches=0)
|
643 |
if return_vis:
|
644 |
canvas = fig.canvas
|
645 |
canvas.draw()
|
|
|
653 |
cross_attn_maps_1024 = []
|
654 |
for attn_map in crossattn_maps.values():
|
655 |
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
|
656 |
+
# if resolution_map != 16:
|
657 |
+
# continue
|
658 |
attn_map = attn_map.reshape(
|
659 |
+
1, resolution_map, resolution_map, -1).permute([0, 3, 1, 2]).float()
|
660 |
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
|
661 |
mode='bicubic', antialias=True)
|
662 |
cross_attn_maps_1024.append(attn_map.permute([0, 2, 3, 1]))
|
663 |
|
664 |
cross_attn_maps_1024 = torch.cat(
|
665 |
cross_attn_maps_1024).mean(0).cpu().numpy()
|
|
|
|
|
|
|
|
|
666 |
normalized_span_maps = []
|
667 |
for token_ids in obj_tokens:
|
668 |
span_token_maps = cross_attn_maps_1024[:, :, token_ids.numpy()]
|
|
|
670 |
for i in range(span_token_maps.shape[-1]):
|
671 |
curr_noun_map = span_token_maps[:, :, i]
|
672 |
normalized_span_map[:, :, i] = (
|
673 |
+
# curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
|
674 |
+
curr_noun_map - np.abs(curr_noun_map.min())) / (curr_noun_map.max()-curr_noun_map.min())
|
675 |
normalized_span_maps.append(normalized_span_map)
|
676 |
foreground_token_maps = [np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze(
|
677 |
) for normalized_span_map in normalized_span_maps]
|
|
|
702 |
0) for token_map in resized_token_maps]
|
703 |
foreground_token_maps = [token_map[None, :, :]
|
704 |
for token_map in foreground_token_maps]
|
705 |
+
if preprocess:
|
706 |
+
selem = square(5)
|
707 |
+
eroded_token_maps = torch.stack([torch.from_numpy(erosion(skimage.img_as_float(
|
708 |
+
map[0].numpy()*255), selem))/255. for map in resized_token_maps[:-1]]).clamp(0, 1)
|
709 |
+
# import ipdb; ipdb.set_trace()
|
710 |
+
eroded_background_maps = (1-eroded_token_maps.sum(0, True)).clamp(0, 1)
|
711 |
+
eroded_token_maps = torch.cat([eroded_token_maps, eroded_background_maps])
|
712 |
+
eroded_token_maps = eroded_token_maps / (eroded_token_maps.sum(0, True)+1e-8)
|
713 |
+
resized_token_maps = [token_map.unsqueeze(
|
714 |
+
0) for token_map in eroded_token_maps]
|
715 |
+
|
716 |
token_maps_vis = plot_attention_maps([foreground_token_maps, resized_token_maps], obj_tokens,
|
717 |
+
save_dir, kmeans_seed, tokens_vis)
|
718 |
resized_token_maps = [token_map.unsqueeze(1).repeat(
|
719 |
[1, 4, 1, 1]).to(attn_map.dtype).cuda() for token_map in resized_token_maps]
|
720 |
if return_vis:
|