Spaces:
Build error
Build error
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import numpy as np | |
# Load the pre-trained text classification model from Hugging Face | |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2) | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
def classify_text(text): | |
# Preprocess the text input | |
encoded_text = tokenizer(text, truncation=True, padding=True, return_tensors="pt") | |
# Make predictions using the pre-trained model | |
with torch.no_grad(): | |
output = model(**encoded_text) | |
logits = output.logits | |
predictions = np.argmax(logits, axis=1) | |
# Convert predictions to class labels | |
class_labels = ["positive", "negative"] | |
predicted_labels = [class_labels[i] for i in predictions] | |
# Return the predicted labels | |
return predicted_labels | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=classify_text, | |
inputs=gr.inputs.Textbox(label="Enter text to classify:"), | |
outputs=gr.outputs.Label(label="Predicted Label:") | |
) | |
# Launch the Gradio interface | |
interface.launch() |