learning-rate-scheduler-online / streamlit_app.py
basicv8vc's picture
Create streamlit_app.py
5764a6a
raw
history blame
21.2 kB
import time
import re
import streamlit as st
import oneflow as flow
import numpy as np
import pandas as pd
import altair as alt
from altair import X, Y, Axis
ConstantLR_CODE = """oneflow.optim.lr_scheduler.ConstantLR(
optimizer: Optimizer,
factor: float = 1.0 / 3,
total_iters: int = 5,
last_step: int = -1,
verbose: bool = False
)"""
LinearLR_CODE = """oneflow.optim.lr_scheduler.LinearLR(
optimizer: Optimizer,
start_factor: float = 1.0 / 3,
end_factor: float = 1.0,
total_iters: int = 5,
last_step: int = -1,
verbose: bool = False,
)"""
ExponentialLR_CODE = """oneflow.optim.lr_scheduler.ExponentialLR(
optimizer: Optimizer,
gamma: float,
last_step: int = -1,
verbose: bool = False,
)"""
StepLR_CODE = """oneflow.optim.lr_scheduler.StepLR(
optimizer: Optimizer,
step_size: int,
gamma: float = 0.1,
last_step: int = -1,
verbose: bool = False,
)"""
MultiStepLR_CODE = """oneflow.optim.lr_scheduler.MultiStepLR(
optimizer: Optimizer,
milestones: list,
gamma: float = 0.1,
last_step: int = -1,
verbose: bool = False,
)"""
PolynomialLR_CODE = """oneflow.optim.lr_scheduler.PolynomialLR(
optimizer,
steps: int,
end_learning_rate: float = 0.0001,
power: float = 1.0,
cycle: bool = False,
last_step: int = -1,
verbose: bool = False,
)"""
CosineDecayLR_CODE = """oneflow.optim.lr_scheduler.CosineDecayLR(
optimizer: Optimizer,
decay_steps: int,
alpha: float = 0.0,
last_step: int = -1,
verbose: bool = False,
)"""
CosineAnnealingLR_CODE = """oneflow.optim.lr_scheduler.CosineAnnealingLR(
optimizer: Optimizer,
T_max: int,
eta_min: float = 0.0,
last_step: int = -1,
verbose: bool = False,
)"""
CosineAnnealingWarmRestarts_CODE = """oneflow.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer: Optimizer,
T_0: int,
T_mult: int = 1,
eta_min: float = 0.0,
decay_rate: float = 1.0,
restart_limit: int = 0,
last_step: int = -1,
verbose: bool = False,
)"""
SequentialLR_CODE = """oneflow.optim.lr_scheduler.SequentialLR(
optimizer: Optimizer,
schedulers: Sequence[LRScheduler],
milestones: Sequence[int],
interval_rescaling: Union[Sequence[bool], bool] = False,
last_step: int = -1,
verbose: bool = False,
)"""
WarmupLR_CODE = """oneflow.optim.lr_scheduler.WarmupLR(
scheduler_or_optimizer: Union[LRScheduler, Optimizer],
warmup_factor: float = 1.0 / 3,
warmup_iters: int = 5,
warmup_method: str = "linear",
warmup_prefix: bool = False,
last_step=-1,
verbose=False,
)"""
ReduceLROnPlateau_CODE = """oneflow.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="min",
factor=0.1,
patience=10,
threshold=1e-4,
threshold_mode="rel",
cooldown=0,
min_lr=0,
eps=1e-8,
verbose=False,
)"""
IS_DISPLAY_CODE = False
def _display(display_steps, steps, lrs):
# altair
line = ( # Creating an empty chart in the beginning when the page loads
alt.Chart(pd.DataFrame({"last_step": [], "lr": []}))
.mark_line(point={"filled": True, "fill": "red"})
.encode(
x=X(
"last_step",
axis=Axis(title="step"),
scale=alt.Scale(domain=[0, steps[-1] + 2]),
),
y=Y(
"lr",
axis=Axis(title="lr"),
scale=alt.Scale(domain=[min(lrs) * 0.8, max(lrs) * 1.2]),
),
color=alt.value("#FFAA00"),
)
.properties(width=600, height=400)
.interactive()
)
bar_plot = st.altair_chart(line)
for i in range(display_steps):
df = pd.DataFrame({"last_step": steps[: i + 1], "lr": lrs[: i + 1]})
line = (
alt.Chart(df)
.mark_line(point={"filled": True, "fill": "red"})
.encode(
x=X(
"last_step",
axis=Axis(title="step"),
scale=alt.Scale(domain=[0, steps[-1] + 2]),
),
y=Y(
"lr",
axis=Axis(title="lr"),
scale=alt.Scale(domain=[min(lrs) * 0.8, max(lrs) * 1.2]),
),
color=alt.value("#FFAA00"),
)
.properties(width=600, height=400)
.interactive()
)
bar_plot.altair_chart(line)
# Pretend we're doing some computation that takes time.
time.sleep(0.5)
# st.title("Learning Rate Scheduler Visualization")
st.header("Learning Rate Scheduler Visualization")
scheduler = st.selectbox(
"Please choose one scheduler to display",
(
"ConstantLR",
"LinearLR",
"ExponentialLR",
"StepLR",
"MultiStepLR",
"PolynomialLR",
"CosineDecayLR",
"CosineAnnealingLR",
"CosineAnnealingWarmRestarts",
# "LambdaLR",
# "SequentialLR",
# "WarmupLR",
# "ChainedScheduler",
# "ReduceLROnPlateau",
),
)
if scheduler == "ConstantLR":
if IS_DISPLAY_CODE:
st.code(ConstantLR_CODE, language="python")
st.write("You can set argument values")
factor = st.slider("factor:", 0.0, 1.0, 0.3)
total_iters = st.slider("total_iters:", 0, 20, 5)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.ConstantLR(
optimizer=optimizer, factor=factor, total_iters=total_iters
)
steps = []
lrs = []
display_steps = max(6, total_iters * 2)
for i in range(display_steps):
steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, steps, lrs)
elif scheduler == "LinearLR":
if IS_DISPLAY_CODE:
st.code(LinearLR_CODE, language="python")
st.write("You can set argument values")
start_factor = st.slider("start_factor:", 0.0, 1.0, 0.3)
end_factor = st.slider("end_factor:", 0.0, 1.0, 1.0)
total_iters = st.slider("total_iters:", 0, 20, 5)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.LinearLR(
optimizer=optimizer,
start_factor=start_factor,
end_factor=end_factor,
total_iters=total_iters,
)
steps = []
lrs = []
display_steps = max(6, total_iters * 2)
for i in range(display_steps):
steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, steps, lrs)
elif scheduler == "ExponentialLR":
if IS_DISPLAY_CODE:
st.code(ExponentialLR_CODE, language="python")
st.write("You can set argument values")
gamma = st.slider("gamma:", 0.0, 1.0, 0.9)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.ExponentialLR(
optimizer=optimizer,
gamma=gamma,
)
steps = []
lrs = []
display_steps = 20
for i in range(display_steps):
steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, steps, lrs)
elif scheduler == "StepLR":
if IS_DISPLAY_CODE:
st.code(StepLR_CODE, language="python")
st.write("You can set argument values")
step_size = st.slider("step_size:", 0, 10, 2)
gamma = st.slider("gamma:", 0.0, 1.0, 0.9)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.StepLR(
optimizer=optimizer,
step_size=step_size,
gamma=gamma,
)
steps = []
lrs = []
display_steps = 20
for i in range(display_steps):
steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, steps, lrs)
elif scheduler == "MultiStepLR":
if IS_DISPLAY_CODE:
st.code(MultiStepLR_CODE, language="python")
st.write("You can set argument values")
collect_numbers = lambda x: [int(i) for i in re.split("[^0-9]", x) if i != ""]
milestones = st.text_input("PLease enter milestones")
milestones = collect_numbers(milestones)
if milestones is None or len(milestones) == 0:
milestones = [5]
gamma = st.slider("gamma:", 0.0, 1.0, 0.9)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.MultiStepLR(
optimizer=optimizer,
milestones=milestones,
gamma=gamma,
)
steps = []
lrs = []
display_steps = milestones[-1] + 5
for i in range(display_steps):
steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, steps, lrs)
elif scheduler == "PolynomialLR":
if IS_DISPLAY_CODE:
st.code(PolynomialLR_CODE, language="python")
st.write("You can set argument values")
steps = st.slider("steps:", 1, 10, 5)
end_learning_rate = st.slider("end_learning_rate", 0.0, 1.0, 0.0001)
power = st.slider("power", 0.0, 10.0, 1.0)
cycle = st.checkbox(
"cycle",
)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.PolynomialLR(
optimizer=optimizer,
steps=steps,
end_learning_rate=end_learning_rate,
power=power,
cycle=cycle,
)
x_steps = []
lrs = []
display_steps = max(steps + 5, 10)
for i in range(display_steps):
x_steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, x_steps, lrs)
elif scheduler == "CosineDecayLR":
if IS_DISPLAY_CODE:
st.code(CosineDecayLR_CODE, language="python")
st.write("You can set argument values")
decay_steps = st.slider("decay_steps:", 0, 10, 5)
alpha = st.slider("alpha", 0.0, 1.0, 0.0)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.CosineDecayLR(
optimizer=optimizer,
decay_steps=decay_steps,
alpha=alpha,
)
x_steps = []
lrs = []
display_steps = max(decay_steps + 5, 10)
for i in range(display_steps):
x_steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, x_steps, lrs)
elif scheduler == "CosineAnnealingLR":
if IS_DISPLAY_CODE:
st.code(CosineAnnealingLR_CODE, language="python")
st.write("You can set argument values")
T_max = st.slider("T_max", 1, 20, 20)
eta_min = st.slider("eta_min", 0.0, 1.0, 0.0)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.CosineAnnealingLR(
optimizer=optimizer,
T_max=T_max,
eta_min=eta_min,
)
x_steps = []
lrs = []
display_steps = max(T_max + 5, 20)
for i in range(display_steps):
x_steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, x_steps, lrs)
elif scheduler == "CosineAnnealingWarmRestarts":
if IS_DISPLAY_CODE:
st.code(CosineAnnealingWarmRestarts_CODE, language="python")
st.write("You can set argument values")
T_0 = st.slider("T_0", 1, 20, 5)
T_mult = st.slider("T_mult", 1, 5, 1)
eta_min = st.slider("eta_min", 0.0, 1.0, 0.0)
decay_rate = st.slider("decay_rate", 0.0, 1.0, 1.0)
restart_limit = st.slider("restart_limit", 0, 5, 0)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer=optimizer,
T_0=T_0,
T_mult=T_mult,
eta_min=eta_min,
decay_rate=decay_rate,
restart_limit=restart_limit,
)
x_steps = []
lrs = []
display_steps = max(T_0 + 5, 20)
for i in range(display_steps):
x_steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, x_steps, lrs)
# elif scheduler == "LambdaLR":
# code = """oneflow.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_step=-1, verbose=False)"""
# st.code(code, language="python")
elif scheduler == "SequentialLR":
if IS_DISPLAY_CODE:
st.code(SequentialLR_CODE, language="python")
st.write("You can set argument values")
schedulers = st.multiselect(
"you can choose multiple schedulers",
[
"ConstantLR",
"LinearLR",
"ExponentialLR",
"StepLR",
"MultiStepLR",
"PolynomialLR",
"CosineDecayLR",
"CosineAnnealingLR",
"CosineAnnealingWarmRestarts",
"ConstantLR",
"LinearLR",
"ExponentialLR",
"StepLR",
"MultiStepLR",
"PolynomialLR",
"CosineDecayLR",
"CosineAnnealingLR",
"CosineAnnealingWarmRestarts",
],
)
collect_numbers = lambda x: [int(i) for i in re.split("[^0-9]", x) if i != ""]
milestones = st.text_input("PLease enter milestones")
milestones = collect_numbers(milestones)
interval_rescaling = st.checkbox("interval_rescaling")
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.SequentialLR(
optimizer=optimizer,
schedulers=schedulers,
milestones=milestones,
interval_rescaling=interval_rescaling,
)
x_steps = []
lrs = []
display_steps = max(milestones[-1] + 5, 20)
for i in range(display_steps):
x_steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, x_steps, lrs)
elif scheduler == "WarmupLR":
if IS_DISPLAY_CODE:
st.code(WarmupLR_CODE, language="python")
scheduler_or_optimizer = st.selectbox(
"choose one scheduler for scheduler_or_optimizer",
[
"ConstantLR",
"LinearLR",
"ExponentialLR",
"StepLR",
"MultiStepLR",
"PolynomialLR",
"CosineDecayLR",
"CosineAnnealingLR",
"CosineAnnealingWarmRestarts",
],
)
warmup_factor = st.slider("warmup_factor:", 0.0, 1.0, 0.3)
warmup_iters = st.slider("warmup_iters:", 1, 10, 5)
warmup_method = st.selectbox("warmup_method", ["linear", "constant"])
warmup_prefix = st.checkbox("warmup_prefix")
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.WarmupLR(
optimizer=optimizer,
scheduler_or_optimizer=scheduler_or_optimizer,
warmup_factor=warmup_factor,
warmup_iters=warmup_iters,
warmup_method=warmup_method,
warmup_prefix=warmup_prefix,
)
x_steps = []
lrs = []
display_steps = max(warmup_factor + 5, 20)
for i in range(display_steps):
x_steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, x_steps, lrs)
elif scheduler == "ChainedScheduler":
if IS_DISPLAY_CODE:
code = """oneflow.optim.lr_scheduler.ChainedScheduler(schedulers)"""
st.code(code, language="python")
st.write("You can set argument values")
schedulers = st.multiselect(
"you can choose multiple schedulers",
[
"ConstantLR",
"LinearLR",
"ExponentialLR",
"StepLR",
"MultiStepLR",
"PolynomialLR",
"CosineDecayLR",
"CosineAnnealingLR",
"CosineAnnealingWarmRestarts",
"ConstantLR",
"LinearLR",
"ExponentialLR",
"StepLR",
"MultiStepLR",
"PolynomialLR",
"CosineDecayLR",
"CosineAnnealingLR",
"CosineAnnealingWarmRestarts",
],
)
lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
net = flow.nn.Linear(10, 2)
optimizer = flow.optim.SGD(net.parameters(), lr=lr)
scheduler = flow.optim.lr_scheduler.ChainedScheduler(
optimizer=optimizer,
schedulers=schedulers,
)
x_steps = []
lrs = []
display_steps = 20
for i in range(display_steps):
x_steps.append(i)
lrs.append(scheduler.get_last_lr()[0])
scheduler.step()
col1, col2, col3 = st.columns(3)
if col2.button("Display?"):
_display(display_steps, x_steps, lrs)
# elif scheduler == "ReduceLROnPlateau":
# st.code(ReduceLROnPlateau_CODE, language="python")
# st.write("You can set argument values")
# mode = st.selectbox(
# "mode",
# [
# "min",
# "max",
# ],
# )
# factor = st.slider("factor", 1e-5, 1.0 - 1e-5, 0.1)
# patience = st.slider("patience", 1, 20, 10)
# threshold = st.slider("threshold", 1e-4, 9e-4, 1e-4)
# threshold_mode = st.selectbox("threshold_mode", ["rel", "abs"])
# cooldown = st.slider("cooldown", 0, 10, 0)
# min_lr = st.slider("min_lr", 0.0, 1.0, 0.0)
# eps = st.slider("eps", 1e-8, 9e-8, 1e-8)
# lr = st.slider("initial learning rate in Optimizer(e.g. SGD, Adam):", 0.0, 1.0, 0.1)
# net = flow.nn.Linear(10, 2)
# optimizer = flow.optim.SGD(net.parameters(), lr=lr)
# scheduler = flow.optim.lr_scheduler.ReduceLROnPlateau(
# optimizer=optimizer,
# mode=mode,
# factor=factor,
# patience=patience,
# threshold=threshold,
# threshold_mode=threshold_mode,
# cooldown=cooldown,
# min_lr=min_lr,
# eps=eps,
# )
# x_steps = []
# lrs = []
# display_steps = 25
# for i in range(display_steps):
# x_steps.append(i)
# lrs.append(scheduler.get_last_lr()[0])
# scheduler.step()
# col1, col2, col3 = st.columns(3)
# if col2.button("Display?"):
# _display(display_steps, x_steps, lrs)