bascobasculino commited on
Commit
e9e38c2
·
1 Parent(s): 04c098b
Files changed (3) hide show
  1. my_metricv2.py +10 -11
  2. requirements.txt +1 -2
  3. tests.py +9 -9
my_metricv2.py CHANGED
@@ -11,23 +11,26 @@
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
- """TODO: Add a description here."""
15
 
16
  import evaluate
17
  import datasets
18
  import motmetrics as mm
19
  import numpy as np
20
 
21
- # TODO: Add BibTeX citation
22
  _CITATION = """\
23
  @InProceedings{huggingface:module,
24
  title = {A great new module},
25
  authors={huggingface, Inc.},
26
  year={2020}
 
 
 
 
 
 
27
  }
28
  """
29
 
30
- # TODO: Add description of the module here
31
  _DESCRIPTION = """\
32
  The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
33
  algorithms by computing various metrics based on predicted and ground truth bounding
@@ -35,7 +38,6 @@ boxes. It serves as a crucial tool in assessing the performance of MOT systems,
35
  aiding in the iterative improvement of tracking algorithms."""
36
 
37
 
38
- # TODO: Add description of the arguments of the module here
39
  _KWARGS_DESCRIPTION = """
40
 
41
  Calculates how good are predictions given some references, using certain scores
@@ -101,11 +103,10 @@ Examples:
101
 
102
  >>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
103
  >>> print(results)
104
- {'idf1': {0: 0.8421052631578947}, 'idp': {0: 0.8888888888888888}, 'idr': {0: 0.8}, 'recall': {0: 0.8},
105
- 'precision': {0: 0.8888888888888888}, 'num_unique_objects': {0: 3}, 'mostly_tracked': {0: 2},
106
- 'partially_tracked': {0: 1}, 'mostly_lost': {0: 0}, 'num_false_positives': {0: 1}, 'num_misses': {0: 2},
107
- 'num_switches': {0: 0}, 'num_fragmentations': {0: 0}, 'mota': {0: 0.7}, 'motp': {0: 0.02981870229007634},
108
- 'num_transfer': {0: 0}, 'num_ascend': {0: 0}, 'num_migrate': {0: 0}}
109
  """
110
 
111
 
@@ -130,8 +131,6 @@ class MyMetricv2(evaluate.Metric):
130
  datasets.Sequence(datasets.Value("float"))
131
  )
132
  }),
133
- # Homepage of the module for documentation
134
- homepage="http://module.homepage",
135
  # Additional links to the codebase or references
136
  codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
137
  reference_urls=["http://path.to.reference.url/new_module"]
 
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
 
14
 
15
  import evaluate
16
  import datasets
17
  import motmetrics as mm
18
  import numpy as np
19
 
 
20
  _CITATION = """\
21
  @InProceedings{huggingface:module,
22
  title = {A great new module},
23
  authors={huggingface, Inc.},
24
  year={2020}
25
+ }\
26
+ @article{milan2016mot16,
27
+ title={MOT16: A benchmark for multi-object tracking},
28
+ author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
29
+ journal={arXiv preprint arXiv:1603.00831},
30
+ year={2016}
31
  }
32
  """
33
 
 
34
  _DESCRIPTION = """\
35
  The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
36
  algorithms by computing various metrics based on predicted and ground truth bounding
 
38
  aiding in the iterative improvement of tracking algorithms."""
39
 
40
 
 
41
  _KWARGS_DESCRIPTION = """
42
 
43
  Calculates how good are predictions given some references, using certain scores
 
103
 
104
  >>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
105
  >>> print(results)
106
+ {'idf1': 0.8421052631578947, 'idp': 0.8888888888888888, 'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
107
+ 'num_unique_objects': 3,'mostly_tracked': 2, 'partially_tracked': 1, 'mostly_lost': 0, 'num_false_positives': 1,
108
+ 'num_misses': 2, 'num_switches': 0, 'num_fragmentations': 0, 'mota': 0.7, 'motp': 0.02981870229007634,
109
+ 'num_transfer': 0, 'num_ascend': 0, 'num_migrate': 0}
 
110
  """
111
 
112
 
 
131
  datasets.Sequence(datasets.Value("float"))
132
  )
133
  }),
 
 
134
  # Additional links to the codebase or references
135
  codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
136
  reference_urls=["http://path.to.reference.url/new_module"]
requirements.txt CHANGED
@@ -1,4 +1,3 @@
1
  git+https://github.com/huggingface/evaluate@main
2
  numpy
3
- motmetrics
4
- scikit-learn
 
1
  git+https://github.com/huggingface/evaluate@main
2
  numpy
3
+ motmetrics
 
tests.py CHANGED
@@ -24,14 +24,14 @@ test_cases = [
24
  [5, 1, 30, 40, 50, 60],
25
  [5, 2, 70, 80, 90, 100]
26
  ]],
27
- "result": {'idf1': {0: 0.8421052631578947}, 'idp': {0: 0.8888888888888888},
28
- 'idr': {0: 0.8}, 'recall': {0: 0.8}, 'precision': {0: 0.8888888888888888},
29
- 'num_unique_objects': {0: 3}, 'mostly_tracked': {0: 2},
30
- 'partially_tracked': {0: 1}, 'mostly_lost': {0: 0},
31
- 'num_false_positives': {0: 1}, 'num_misses': {0: 2},
32
- 'num_switches': {0: 0}, 'num_fragmentations': {0: 0},
33
- 'mota': {0: 0.7}, 'motp': {0: 0.02981870229007634},
34
- 'num_transfer': {0: 0}, 'num_ascend': {0: 0},
35
- 'num_migrate': {0: 0}}
36
  },
37
  ]
 
24
  [5, 1, 30, 40, 50, 60],
25
  [5, 2, 70, 80, 90, 100]
26
  ]],
27
+ "result": {'idf1': 0.8421052631578947, 'idp': 0.8888888888888888,
28
+ 'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
29
+ 'num_unique_objects': 3,'mostly_tracked': 2,
30
+ 'partially_tracked': 1, 'mostly_lost': 0,
31
+ 'num_false_positives': 1, 'num_misses': 2,
32
+ 'num_switches': 0, 'num_fragmentations': 0,
33
+ 'mota': 0.7, 'motp': 0.02981870229007634,
34
+ 'num_transfer': 0, 'num_ascend': 0,
35
+ 'num_migrate': 0}
36
  },
37
  ]