Spaces:
Running
Running
import json | |
import logging | |
import time | |
import metaphor_python as metaphor | |
import requests | |
from langchain import PromptTemplate | |
from langchain.llms import Clarifai | |
from global_config import GlobalConfig | |
logging.basicConfig( | |
level=GlobalConfig.LOG_LEVEL, | |
format='%(asctime)s - %(message)s', | |
) | |
prompt = None | |
llm_contents = None | |
llm_json = None | |
metaphor_client = None | |
def get_llm(use_gpt: bool) -> Clarifai: | |
""" | |
Get a large language model. | |
:param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required | |
""" | |
if use_gpt: | |
llm = Clarifai( | |
pat=GlobalConfig.CLARIFAI_PAT, | |
user_id=GlobalConfig.CLARIFAI_USER_ID_GPT, | |
app_id=GlobalConfig.CLARIFAI_APP_ID_GPT, | |
model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT, | |
verbose=True, | |
# temperature=0.1, | |
) | |
else: | |
llm = Clarifai( | |
pat=GlobalConfig.CLARIFAI_PAT, | |
user_id=GlobalConfig.CLARIFAI_USER_ID, | |
app_id=GlobalConfig.CLARIFAI_APP_ID, | |
model_id=GlobalConfig.CLARIFAI_MODEL_ID, | |
verbose=True, | |
# temperature=0.1, | |
) | |
# print(llm) | |
return llm | |
def generate_slides_content(topic: str) -> str: | |
""" | |
Generate the outline/contents of slides for a presentation on a given topic. | |
:param topic: Topic/subject matter/idea on which slides are to be generated | |
:return: The content | |
""" | |
global prompt | |
global llm_contents | |
if prompt is None: | |
with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file: | |
template_txt = in_file.read().strip() | |
prompt = PromptTemplate.from_template(template_txt) | |
formatted_prompt = prompt.format(topic=topic) | |
# print(f'formatted_prompt:\n{formatted_prompt}') | |
if llm_contents is None: | |
llm_contents = get_llm(use_gpt=False) | |
slides_content = llm_contents(formatted_prompt, verbose=True) | |
return slides_content | |
def text_to_json(content: str) -> str: | |
""" | |
Convert input text into structured JSON representation. | |
:param content: Input text | |
:return: JSON string | |
""" | |
global llm_json | |
content = content.replace('```', '') | |
# f-string is not used in order to prevent interpreting the brackets | |
with open(GlobalConfig.JSON_TEMPLATE_FILE, 'r') as in_file: | |
text = in_file.read() | |
# Insert the actual text contents | |
text = text.replace('<REPLACE_PLACEHOLDER>', content) | |
text = text.strip() | |
# print(text) | |
if llm_json is None: | |
llm_json = get_llm(use_gpt=True) | |
output = llm_json(text, verbose=True) | |
output = output.strip() | |
first_index = max(0, output.find('{')) | |
last_index = min(output.rfind('}'), len(output)) | |
output = output[first_index: last_index + 1] | |
return output | |
def text_to_yaml(content: str) -> str: | |
""" | |
Convert input text into structured YAML representation. | |
:param content: Input text | |
:return: JSON string | |
""" | |
global llm_json | |
content = content.replace('```', '') | |
# f-string is not used in order to prevent interpreting the brackets | |
text = ''' | |
You are a helpful AI assistant. | |
Convert the given slide deck text into structured YAML output. | |
Also, generate and add an engaging presentation title. | |
The output should be only correct and valid YAML having the following structure: | |
title: "..." | |
slides: | |
- heading: "..." | |
bullet_points: | |
- "..." | |
- "..." | |
- heading: "..." | |
bullet_points: | |
- "..." | |
- "...": # This line ends with a colon because it has a sub-block | |
- "..." | |
- "..." | |
Text: | |
''' | |
text += content | |
text += ''' | |
Output: | |
```yaml | |
''' | |
text = text.strip() | |
# print(text) | |
if llm_json is None: | |
llm_json = get_llm(use_gpt=True) | |
output = llm_json(text, verbose=True) | |
output = output.strip() | |
# first_index = max(0, output.find('{')) | |
# last_index = min(output.rfind('}'), len(output)) | |
# output = output[first_index: last_index + 1] | |
return output | |
def get_related_websites(query: str) -> metaphor.api.SearchResponse: | |
""" | |
Fetch Web search results for a given query. | |
:param query: The query text | |
:return: The search results object | |
""" | |
global metaphor_client | |
if not metaphor_client: | |
metaphor_client = metaphor.Metaphor(api_key=GlobalConfig.METAPHOR_API_KEY) | |
return metaphor_client.search(query, use_autoprompt=True, num_results=5) | |
def get_ai_image(text: str) -> str: | |
""" | |
Get a Stable Diffusion-generated image based on a given text. | |
:param text: The input text | |
:return: The Base 64-encoded image | |
""" | |
url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs''' | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}' | |
} | |
data = { | |
"inputs": [ | |
{ | |
"data": { | |
"text": { | |
"raw": text | |
} | |
} | |
} | |
] | |
} | |
# print('*** AI image generator...') | |
# print(url) | |
start = time.time() | |
response = requests.post( | |
url=url, | |
headers=headers, | |
data=json.dumps(data) | |
) | |
stop = time.time() | |
# print('Response:', response, response.status_code) | |
logging.debug('Image generation took', stop - start, 'seconds') | |
img_data = '' | |
if response.ok: | |
# print('*** Clarifai SDXL request: Response OK') | |
json_data = json.loads(response.text) | |
img_data = json_data['outputs'][0]['data']['image']['base64'] | |
else: | |
logging.error('*** Image generation failed:', response.text) | |
return img_data | |
if __name__ == '__main__': | |
# results = get_related_websites('5G AI WiFi 6') | |
# | |
# for a_result in results.results: | |
# print(a_result.title, a_result.url, a_result.extract) | |
# get_ai_image('A talk on AI, covering pros and cons') | |
pass | |