bartmiller commited on
Commit
0b6725c
Β·
1 Parent(s): d2e95f2

Upload 2 files

Browse files
Files changed (2) hide show
  1. glass.csv +215 -0
  2. kaggle_data_and_huggingface.ipynb +956 -0
glass.csv ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RI,Na,Mg,Al,Si,K,Ca,Ba,Fe,Type
2
+ 1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
3
+ 1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
4
+ 1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
5
+ 1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0,0,1
6
+ 1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0,0,1
7
+ 1.51596,12.79,3.61,1.62,72.97,0.64,8.07,0,0.26,1
8
+ 1.51743,13.3,3.6,1.14,73.09,0.58,8.17,0,0,1
9
+ 1.51756,13.15,3.61,1.05,73.24,0.57,8.24,0,0,1
10
+ 1.51918,14.04,3.58,1.37,72.08,0.56,8.3,0,0,1
11
+ 1.51755,13,3.6,1.36,72.99,0.57,8.4,0,0.11,1
12
+ 1.51571,12.72,3.46,1.56,73.2,0.67,8.09,0,0.24,1
13
+ 1.51763,12.8,3.66,1.27,73.01,0.6,8.56,0,0,1
14
+ 1.51589,12.88,3.43,1.4,73.28,0.69,8.05,0,0.24,1
15
+ 1.51748,12.86,3.56,1.27,73.21,0.54,8.38,0,0.17,1
16
+ 1.51763,12.61,3.59,1.31,73.29,0.58,8.5,0,0,1
17
+ 1.51761,12.81,3.54,1.23,73.24,0.58,8.39,0,0,1
18
+ 1.51784,12.68,3.67,1.16,73.11,0.61,8.7,0,0,1
19
+ 1.52196,14.36,3.85,0.89,71.36,0.15,9.15,0,0,1
20
+ 1.51911,13.9,3.73,1.18,72.12,0.06,8.89,0,0,1
21
+ 1.51735,13.02,3.54,1.69,72.73,0.54,8.44,0,0.07,1
22
+ 1.5175,12.82,3.55,1.49,72.75,0.54,8.52,0,0.19,1
23
+ 1.51966,14.77,3.75,0.29,72.02,0.03,9,0,0,1
24
+ 1.51736,12.78,3.62,1.29,72.79,0.59,8.7,0,0,1
25
+ 1.51751,12.81,3.57,1.35,73.02,0.62,8.59,0,0,1
26
+ 1.5172,13.38,3.5,1.15,72.85,0.5,8.43,0,0,1
27
+ 1.51764,12.98,3.54,1.21,73,0.65,8.53,0,0,1
28
+ 1.51793,13.21,3.48,1.41,72.64,0.59,8.43,0,0,1
29
+ 1.51721,12.87,3.48,1.33,73.04,0.56,8.43,0,0,1
30
+ 1.51768,12.56,3.52,1.43,73.15,0.57,8.54,0,0,1
31
+ 1.51784,13.08,3.49,1.28,72.86,0.6,8.49,0,0,1
32
+ 1.51768,12.65,3.56,1.3,73.08,0.61,8.69,0,0.14,1
33
+ 1.51747,12.84,3.5,1.14,73.27,0.56,8.55,0,0,1
34
+ 1.51775,12.85,3.48,1.23,72.97,0.61,8.56,0.09,0.22,1
35
+ 1.51753,12.57,3.47,1.38,73.39,0.6,8.55,0,0.06,1
36
+ 1.51783,12.69,3.54,1.34,72.95,0.57,8.75,0,0,1
37
+ 1.51567,13.29,3.45,1.21,72.74,0.56,8.57,0,0,1
38
+ 1.51909,13.89,3.53,1.32,71.81,0.51,8.78,0.11,0,1
39
+ 1.51797,12.74,3.48,1.35,72.96,0.64,8.68,0,0,1
40
+ 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
41
+ 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
42
+ 1.51793,12.79,3.5,1.12,73.03,0.64,8.77,0,0,1
43
+ 1.51755,12.71,3.42,1.2,73.2,0.59,8.64,0,0,1
44
+ 1.51779,13.21,3.39,1.33,72.76,0.59,8.59,0,0,1
45
+ 1.5221,13.73,3.84,0.72,71.76,0.17,9.74,0,0,1
46
+ 1.51786,12.73,3.43,1.19,72.95,0.62,8.76,0,0.3,1
47
+ 1.519,13.49,3.48,1.35,71.95,0.55,9,0,0,1
48
+ 1.51869,13.19,3.37,1.18,72.72,0.57,8.83,0,0.16,1
49
+ 1.52667,13.99,3.7,0.71,71.57,0.02,9.82,0,0.1,1
50
+ 1.52223,13.21,3.77,0.79,71.99,0.13,10.02,0,0,1
51
+ 1.51898,13.58,3.35,1.23,72.08,0.59,8.91,0,0,1
52
+ 1.5232,13.72,3.72,0.51,71.75,0.09,10.06,0,0.16,1
53
+ 1.51926,13.2,3.33,1.28,72.36,0.6,9.14,0,0.11,1
54
+ 1.51808,13.43,2.87,1.19,72.84,0.55,9.03,0,0,1
55
+ 1.51837,13.14,2.84,1.28,72.85,0.55,9.07,0,0,1
56
+ 1.51778,13.21,2.81,1.29,72.98,0.51,9.02,0,0.09,1
57
+ 1.51769,12.45,2.71,1.29,73.7,0.56,9.06,0,0.24,1
58
+ 1.51215,12.99,3.47,1.12,72.98,0.62,8.35,0,0.31,1
59
+ 1.51824,12.87,3.48,1.29,72.95,0.6,8.43,0,0,1
60
+ 1.51754,13.48,3.74,1.17,72.99,0.59,8.03,0,0,1
61
+ 1.51754,13.39,3.66,1.19,72.79,0.57,8.27,0,0.11,1
62
+ 1.51905,13.6,3.62,1.11,72.64,0.14,8.76,0,0,1
63
+ 1.51977,13.81,3.58,1.32,71.72,0.12,8.67,0.69,0,1
64
+ 1.52172,13.51,3.86,0.88,71.79,0.23,9.54,0,0.11,1
65
+ 1.52227,14.17,3.81,0.78,71.35,0,9.69,0,0,1
66
+ 1.52172,13.48,3.74,0.9,72.01,0.18,9.61,0,0.07,1
67
+ 1.52099,13.69,3.59,1.12,71.96,0.09,9.4,0,0,1
68
+ 1.52152,13.05,3.65,0.87,72.22,0.19,9.85,0,0.17,1
69
+ 1.52152,13.05,3.65,0.87,72.32,0.19,9.85,0,0.17,1
70
+ 1.52152,13.12,3.58,0.9,72.2,0.23,9.82,0,0.16,1
71
+ 1.523,13.31,3.58,0.82,71.99,0.12,10.17,0,0.03,1
72
+ 1.51574,14.86,3.67,1.74,71.87,0.16,7.36,0,0.12,2
73
+ 1.51848,13.64,3.87,1.27,71.96,0.54,8.32,0,0.32,2
74
+ 1.51593,13.09,3.59,1.52,73.1,0.67,7.83,0,0,2
75
+ 1.51631,13.34,3.57,1.57,72.87,0.61,7.89,0,0,2
76
+ 1.51596,13.02,3.56,1.54,73.11,0.72,7.9,0,0,2
77
+ 1.5159,13.02,3.58,1.51,73.12,0.69,7.96,0,0,2
78
+ 1.51645,13.44,3.61,1.54,72.39,0.66,8.03,0,0,2
79
+ 1.51627,13,3.58,1.54,72.83,0.61,8.04,0,0,2
80
+ 1.51613,13.92,3.52,1.25,72.88,0.37,7.94,0,0.14,2
81
+ 1.5159,12.82,3.52,1.9,72.86,0.69,7.97,0,0,2
82
+ 1.51592,12.86,3.52,2.12,72.66,0.69,7.97,0,0,2
83
+ 1.51593,13.25,3.45,1.43,73.17,0.61,7.86,0,0,2
84
+ 1.51646,13.41,3.55,1.25,72.81,0.68,8.1,0,0,2
85
+ 1.51594,13.09,3.52,1.55,72.87,0.68,8.05,0,0.09,2
86
+ 1.51409,14.25,3.09,2.08,72.28,1.1,7.08,0,0,2
87
+ 1.51625,13.36,3.58,1.49,72.72,0.45,8.21,0,0,2
88
+ 1.51569,13.24,3.49,1.47,73.25,0.38,8.03,0,0,2
89
+ 1.51645,13.4,3.49,1.52,72.65,0.67,8.08,0,0.1,2
90
+ 1.51618,13.01,3.5,1.48,72.89,0.6,8.12,0,0,2
91
+ 1.5164,12.55,3.48,1.87,73.23,0.63,8.08,0,0.09,2
92
+ 1.51841,12.93,3.74,1.11,72.28,0.64,8.96,0,0.22,2
93
+ 1.51605,12.9,3.44,1.45,73.06,0.44,8.27,0,0,2
94
+ 1.51588,13.12,3.41,1.58,73.26,0.07,8.39,0,0.19,2
95
+ 1.5159,13.24,3.34,1.47,73.1,0.39,8.22,0,0,2
96
+ 1.51629,12.71,3.33,1.49,73.28,0.67,8.24,0,0,2
97
+ 1.5186,13.36,3.43,1.43,72.26,0.51,8.6,0,0,2
98
+ 1.51841,13.02,3.62,1.06,72.34,0.64,9.13,0,0.15,2
99
+ 1.51743,12.2,3.25,1.16,73.55,0.62,8.9,0,0.24,2
100
+ 1.51689,12.67,2.88,1.71,73.21,0.73,8.54,0,0,2
101
+ 1.51811,12.96,2.96,1.43,72.92,0.6,8.79,0.14,0,2
102
+ 1.51655,12.75,2.85,1.44,73.27,0.57,8.79,0.11,0.22,2
103
+ 1.5173,12.35,2.72,1.63,72.87,0.7,9.23,0,0,2
104
+ 1.5182,12.62,2.76,0.83,73.81,0.35,9.42,0,0.2,2
105
+ 1.52725,13.8,3.15,0.66,70.57,0.08,11.64,0,0,2
106
+ 1.5241,13.83,2.9,1.17,71.15,0.08,10.79,0,0,2
107
+ 1.52475,11.45,0,1.88,72.19,0.81,13.24,0,0.34,2
108
+ 1.53125,10.73,0,2.1,69.81,0.58,13.3,3.15,0.28,2
109
+ 1.53393,12.3,0,1,70.16,0.12,16.19,0,0.24,2
110
+ 1.52222,14.43,0,1,72.67,0.1,11.52,0,0.08,2
111
+ 1.51818,13.72,0,0.56,74.45,0,10.99,0,0,2
112
+ 1.52664,11.23,0,0.77,73.21,0,14.68,0,0,2
113
+ 1.52739,11.02,0,0.75,73.08,0,14.96,0,0,2
114
+ 1.52777,12.64,0,0.67,72.02,0.06,14.4,0,0,2
115
+ 1.51892,13.46,3.83,1.26,72.55,0.57,8.21,0,0.14,2
116
+ 1.51847,13.1,3.97,1.19,72.44,0.6,8.43,0,0,2
117
+ 1.51846,13.41,3.89,1.33,72.38,0.51,8.28,0,0,2
118
+ 1.51829,13.24,3.9,1.41,72.33,0.55,8.31,0,0.1,2
119
+ 1.51708,13.72,3.68,1.81,72.06,0.64,7.88,0,0,2
120
+ 1.51673,13.3,3.64,1.53,72.53,0.65,8.03,0,0.29,2
121
+ 1.51652,13.56,3.57,1.47,72.45,0.64,7.96,0,0,2
122
+ 1.51844,13.25,3.76,1.32,72.4,0.58,8.42,0,0,2
123
+ 1.51663,12.93,3.54,1.62,72.96,0.64,8.03,0,0.21,2
124
+ 1.51687,13.23,3.54,1.48,72.84,0.56,8.1,0,0,2
125
+ 1.51707,13.48,3.48,1.71,72.52,0.62,7.99,0,0,2
126
+ 1.52177,13.2,3.68,1.15,72.75,0.54,8.52,0,0,2
127
+ 1.51872,12.93,3.66,1.56,72.51,0.58,8.55,0,0.12,2
128
+ 1.51667,12.94,3.61,1.26,72.75,0.56,8.6,0,0,2
129
+ 1.52081,13.78,2.28,1.43,71.99,0.49,9.85,0,0.17,2
130
+ 1.52068,13.55,2.09,1.67,72.18,0.53,9.57,0.27,0.17,2
131
+ 1.5202,13.98,1.35,1.63,71.76,0.39,10.56,0,0.18,2
132
+ 1.52177,13.75,1.01,1.36,72.19,0.33,11.14,0,0,2
133
+ 1.52614,13.7,0,1.36,71.24,0.19,13.44,0,0.1,2
134
+ 1.51813,13.43,3.98,1.18,72.49,0.58,8.15,0,0,2
135
+ 1.518,13.71,3.93,1.54,71.81,0.54,8.21,0,0.15,2
136
+ 1.51811,13.33,3.85,1.25,72.78,0.52,8.12,0,0,2
137
+ 1.51789,13.19,3.9,1.3,72.33,0.55,8.44,0,0.28,2
138
+ 1.51806,13,3.8,1.08,73.07,0.56,8.38,0,0.12,2
139
+ 1.51711,12.89,3.62,1.57,72.96,0.61,8.11,0,0,2
140
+ 1.51674,12.79,3.52,1.54,73.36,0.66,7.9,0,0,2
141
+ 1.51674,12.87,3.56,1.64,73.14,0.65,7.99,0,0,2
142
+ 1.5169,13.33,3.54,1.61,72.54,0.68,8.11,0,0,2
143
+ 1.51851,13.2,3.63,1.07,72.83,0.57,8.41,0.09,0.17,2
144
+ 1.51662,12.85,3.51,1.44,73.01,0.68,8.23,0.06,0.25,2
145
+ 1.51709,13,3.47,1.79,72.72,0.66,8.18,0,0,2
146
+ 1.5166,12.99,3.18,1.23,72.97,0.58,8.81,0,0.24,2
147
+ 1.51839,12.85,3.67,1.24,72.57,0.62,8.68,0,0.35,2
148
+ 1.51769,13.65,3.66,1.11,72.77,0.11,8.6,0,0,3
149
+ 1.5161,13.33,3.53,1.34,72.67,0.56,8.33,0,0,3
150
+ 1.5167,13.24,3.57,1.38,72.7,0.56,8.44,0,0.1,3
151
+ 1.51643,12.16,3.52,1.35,72.89,0.57,8.53,0,0,3
152
+ 1.51665,13.14,3.45,1.76,72.48,0.6,8.38,0,0.17,3
153
+ 1.52127,14.32,3.9,0.83,71.5,0,9.49,0,0,3
154
+ 1.51779,13.64,3.65,0.65,73,0.06,8.93,0,0,3
155
+ 1.5161,13.42,3.4,1.22,72.69,0.59,8.32,0,0,3
156
+ 1.51694,12.86,3.58,1.31,72.61,0.61,8.79,0,0,3
157
+ 1.51646,13.04,3.4,1.26,73.01,0.52,8.58,0,0,3
158
+ 1.51655,13.41,3.39,1.28,72.64,0.52,8.65,0,0,3
159
+ 1.52121,14.03,3.76,0.58,71.79,0.11,9.65,0,0,3
160
+ 1.51776,13.53,3.41,1.52,72.04,0.58,8.79,0,0,3
161
+ 1.51796,13.5,3.36,1.63,71.94,0.57,8.81,0,0.09,3
162
+ 1.51832,13.33,3.34,1.54,72.14,0.56,8.99,0,0,3
163
+ 1.51934,13.64,3.54,0.75,72.65,0.16,8.89,0.15,0.24,3
164
+ 1.52211,14.19,3.78,0.91,71.36,0.23,9.14,0,0.37,3
165
+ 1.51514,14.01,2.68,3.5,69.89,1.68,5.87,2.2,0,5
166
+ 1.51915,12.73,1.85,1.86,72.69,0.6,10.09,0,0,5
167
+ 1.52171,11.56,1.88,1.56,72.86,0.47,11.41,0,0,5
168
+ 1.52151,11.03,1.71,1.56,73.44,0.58,11.62,0,0,5
169
+ 1.51969,12.64,0,1.65,73.75,0.38,11.53,0,0,5
170
+ 1.51666,12.86,0,1.83,73.88,0.97,10.17,0,0,5
171
+ 1.51994,13.27,0,1.76,73.03,0.47,11.32,0,0,5
172
+ 1.52369,13.44,0,1.58,72.22,0.32,12.24,0,0,5
173
+ 1.51316,13.02,0,3.04,70.48,6.21,6.96,0,0,5
174
+ 1.51321,13,0,3.02,70.7,6.21,6.93,0,0,5
175
+ 1.52043,13.38,0,1.4,72.25,0.33,12.5,0,0,5
176
+ 1.52058,12.85,1.61,2.17,72.18,0.76,9.7,0.24,0.51,5
177
+ 1.52119,12.97,0.33,1.51,73.39,0.13,11.27,0,0.28,5
178
+ 1.51905,14,2.39,1.56,72.37,0,9.57,0,0,6
179
+ 1.51937,13.79,2.41,1.19,72.76,0,9.77,0,0,6
180
+ 1.51829,14.46,2.24,1.62,72.38,0,9.26,0,0,6
181
+ 1.51852,14.09,2.19,1.66,72.67,0,9.32,0,0,6
182
+ 1.51299,14.4,1.74,1.54,74.55,0,7.59,0,0,6
183
+ 1.51888,14.99,0.78,1.74,72.5,0,9.95,0,0,6
184
+ 1.51916,14.15,0,2.09,72.74,0,10.88,0,0,6
185
+ 1.51969,14.56,0,0.56,73.48,0,11.22,0,0,6
186
+ 1.51115,17.38,0,0.34,75.41,0,6.65,0,0,6
187
+ 1.51131,13.69,3.2,1.81,72.81,1.76,5.43,1.19,0,7
188
+ 1.51838,14.32,3.26,2.22,71.25,1.46,5.79,1.63,0,7
189
+ 1.52315,13.44,3.34,1.23,72.38,0.6,8.83,0,0,7
190
+ 1.52247,14.86,2.2,2.06,70.26,0.76,9.76,0,0,7
191
+ 1.52365,15.79,1.83,1.31,70.43,0.31,8.61,1.68,0,7
192
+ 1.51613,13.88,1.78,1.79,73.1,0,8.67,0.76,0,7
193
+ 1.51602,14.85,0,2.38,73.28,0,8.76,0.64,0.09,7
194
+ 1.51623,14.2,0,2.79,73.46,0.04,9.04,0.4,0.09,7
195
+ 1.51719,14.75,0,2,73.02,0,8.53,1.59,0.08,7
196
+ 1.51683,14.56,0,1.98,73.29,0,8.52,1.57,0.07,7
197
+ 1.51545,14.14,0,2.68,73.39,0.08,9.07,0.61,0.05,7
198
+ 1.51556,13.87,0,2.54,73.23,0.14,9.41,0.81,0.01,7
199
+ 1.51727,14.7,0,2.34,73.28,0,8.95,0.66,0,7
200
+ 1.51531,14.38,0,2.66,73.1,0.04,9.08,0.64,0,7
201
+ 1.51609,15.01,0,2.51,73.05,0.05,8.83,0.53,0,7
202
+ 1.51508,15.15,0,2.25,73.5,0,8.34,0.63,0,7
203
+ 1.51653,11.95,0,1.19,75.18,2.7,8.93,0,0,7
204
+ 1.51514,14.85,0,2.42,73.72,0,8.39,0.56,0,7
205
+ 1.51658,14.8,0,1.99,73.11,0,8.28,1.71,0,7
206
+ 1.51617,14.95,0,2.27,73.3,0,8.71,0.67,0,7
207
+ 1.51732,14.95,0,1.8,72.99,0,8.61,1.55,0,7
208
+ 1.51645,14.94,0,1.87,73.11,0,8.67,1.38,0,7
209
+ 1.51831,14.39,0,1.82,72.86,1.41,6.47,2.88,0,7
210
+ 1.5164,14.37,0,2.74,72.85,0,9.45,0.54,0,7
211
+ 1.51623,14.14,0,2.88,72.61,0.08,9.18,1.06,0,7
212
+ 1.51685,14.92,0,1.99,73.06,0,8.4,1.59,0,7
213
+ 1.52065,14.36,0,2.02,73.42,0,8.44,1.64,0,7
214
+ 1.51651,14.38,0,1.94,73.61,0,8.48,1.57,0,7
215
+ 1.51711,14.23,0,2.08,73.36,0,8.62,1.67,0,7
kaggle_data_and_huggingface.ipynb ADDED
@@ -0,0 +1,956 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "source": [
6
+ "https://www.kdnuggets.com/deploying-your-first-machine-learning-model"
7
+ ],
8
+ "metadata": {
9
+ "id": "MP7O1gtliL6n"
10
+ }
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "source": [
15
+ "try:\n",
16
+ " import opendatasets as od\n",
17
+ " import pandas as pd\n",
18
+ "except:\n",
19
+ " !pip install opendatasets\n",
20
+ " import opendatasets as od\n",
21
+ "from os import path\n",
22
+ "\n",
23
+ "url = \"https://www.kaggle.com/datasets/uciml/glass\" ### kaggle dataset url here\n",
24
+ "data_dir = \"/content/\" ### directory where you want to save data\n",
25
+ "\n",
26
+ "# Go to the account tab and under API section, click Create New API Token.\n",
27
+ "\n",
28
+ "# A JSON file will be downloaded, open it locally or you can also use any online JSON viewer and upload it there.\n",
29
+ "\n",
30
+ "# On opening this file, you will find the username and key in it. Copy the username and password and paste it into the prompted Notebook cell.\n",
31
+ "# The content of the downloaded file would look like this.\n",
32
+ "\n",
33
+ "# {\"username\":<KAGGLE USERNAME>,\"key\":<KAGGLE KEY>}\n",
34
+ "\n",
35
+ "\n",
36
+ "def download_data(url, data_dir):\n",
37
+ " od.download(url, data_dir)"
38
+ ],
39
+ "metadata": {
40
+ "id": "5ewudtMkfnPL",
41
+ "outputId": "6abe70ec-7a22-4872-b0e6-623d9e18e1fe",
42
+ "colab": {
43
+ "base_uri": "https://localhost:8080/"
44
+ }
45
+ },
46
+ "execution_count": 1,
47
+ "outputs": [
48
+ {
49
+ "output_type": "stream",
50
+ "name": "stdout",
51
+ "text": [
52
+ "Collecting opendatasets\n",
53
+ " Downloading opendatasets-0.1.22-py3-none-any.whl (15 kB)\n",
54
+ "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from opendatasets) (4.66.1)\n",
55
+ "Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (from opendatasets) (1.5.16)\n",
56
+ "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from opendatasets) (8.1.7)\n",
57
+ "Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (1.16.0)\n",
58
+ "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2023.11.17)\n",
59
+ "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.8.2)\n",
60
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.31.0)\n",
61
+ "Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (8.0.1)\n",
62
+ "Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (2.0.7)\n",
63
+ "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from kaggle->opendatasets) (6.1.0)\n",
64
+ "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->kaggle->opendatasets) (0.5.1)\n",
65
+ "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-packages (from python-slugify->kaggle->opendatasets) (1.3)\n",
66
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle->opendatasets) (3.3.2)\n",
67
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle->opendatasets) (3.6)\n",
68
+ "Installing collected packages: opendatasets\n",
69
+ "Successfully installed opendatasets-0.1.22\n"
70
+ ]
71
+ }
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "source": [
77
+ "download_data(url, data_dir)"
78
+ ],
79
+ "metadata": {
80
+ "id": "y-gTjPFggtAM",
81
+ "outputId": "02890664-5063-4698-d664-ee458de7b125",
82
+ "colab": {
83
+ "base_uri": "https://localhost:8080/"
84
+ }
85
+ },
86
+ "execution_count": 2,
87
+ "outputs": [
88
+ {
89
+ "output_type": "stream",
90
+ "name": "stdout",
91
+ "text": [
92
+ "Please provide your Kaggle credentials to download this dataset. Learn more: http://bit.ly/kaggle-creds\n",
93
+ "Your Kaggle username: bartmiller\n",
94
+ "Your Kaggle Key: Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·\n",
95
+ "Downloading glass.zip to /content/glass\n"
96
+ ]
97
+ },
98
+ {
99
+ "output_type": "stream",
100
+ "name": "stderr",
101
+ "text": [
102
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.42k/3.42k [00:00<00:00, 2.36MB/s]"
103
+ ]
104
+ },
105
+ {
106
+ "output_type": "stream",
107
+ "name": "stdout",
108
+ "text": [
109
+ "\n"
110
+ ]
111
+ },
112
+ {
113
+ "output_type": "stream",
114
+ "name": "stderr",
115
+ "text": [
116
+ "\n"
117
+ ]
118
+ }
119
+ ]
120
+ },
121
+ {
122
+ "cell_type": "code",
123
+ "execution_count": 3,
124
+ "metadata": {
125
+ "colab": {
126
+ "base_uri": "https://localhost:8080/",
127
+ "height": 143
128
+ },
129
+ "id": "lIYdn1woOS1n",
130
+ "outputId": "046caad7-0e5b-4f95-ebb1-ea972539b936"
131
+ },
132
+ "outputs": [
133
+ {
134
+ "output_type": "execute_result",
135
+ "data": {
136
+ "text/plain": [
137
+ " RI Na Mg Al Si K Ca Ba Fe Type\n",
138
+ "6 1.51743 13.30 3.60 1.14 73.09 0.58 8.17 0.0 0.0 1\n",
139
+ "138 1.51674 12.79 3.52 1.54 73.36 0.66 7.90 0.0 0.0 2\n",
140
+ "40 1.51793 12.79 3.50 1.12 73.03 0.64 8.77 0.0 0.0 1"
141
+ ],
142
+ "text/html": [
143
+ "\n",
144
+ " <div id=\"df-cbce004c-2373-4269-b108-792cb1bca131\" class=\"colab-df-container\">\n",
145
+ " <div>\n",
146
+ "<style scoped>\n",
147
+ " .dataframe tbody tr th:only-of-type {\n",
148
+ " vertical-align: middle;\n",
149
+ " }\n",
150
+ "\n",
151
+ " .dataframe tbody tr th {\n",
152
+ " vertical-align: top;\n",
153
+ " }\n",
154
+ "\n",
155
+ " .dataframe thead th {\n",
156
+ " text-align: right;\n",
157
+ " }\n",
158
+ "</style>\n",
159
+ "<table border=\"1\" class=\"dataframe\">\n",
160
+ " <thead>\n",
161
+ " <tr style=\"text-align: right;\">\n",
162
+ " <th></th>\n",
163
+ " <th>RI</th>\n",
164
+ " <th>Na</th>\n",
165
+ " <th>Mg</th>\n",
166
+ " <th>Al</th>\n",
167
+ " <th>Si</th>\n",
168
+ " <th>K</th>\n",
169
+ " <th>Ca</th>\n",
170
+ " <th>Ba</th>\n",
171
+ " <th>Fe</th>\n",
172
+ " <th>Type</th>\n",
173
+ " </tr>\n",
174
+ " </thead>\n",
175
+ " <tbody>\n",
176
+ " <tr>\n",
177
+ " <th>6</th>\n",
178
+ " <td>1.51743</td>\n",
179
+ " <td>13.30</td>\n",
180
+ " <td>3.60</td>\n",
181
+ " <td>1.14</td>\n",
182
+ " <td>73.09</td>\n",
183
+ " <td>0.58</td>\n",
184
+ " <td>8.17</td>\n",
185
+ " <td>0.0</td>\n",
186
+ " <td>0.0</td>\n",
187
+ " <td>1</td>\n",
188
+ " </tr>\n",
189
+ " <tr>\n",
190
+ " <th>138</th>\n",
191
+ " <td>1.51674</td>\n",
192
+ " <td>12.79</td>\n",
193
+ " <td>3.52</td>\n",
194
+ " <td>1.54</td>\n",
195
+ " <td>73.36</td>\n",
196
+ " <td>0.66</td>\n",
197
+ " <td>7.90</td>\n",
198
+ " <td>0.0</td>\n",
199
+ " <td>0.0</td>\n",
200
+ " <td>2</td>\n",
201
+ " </tr>\n",
202
+ " <tr>\n",
203
+ " <th>40</th>\n",
204
+ " <td>1.51793</td>\n",
205
+ " <td>12.79</td>\n",
206
+ " <td>3.50</td>\n",
207
+ " <td>1.12</td>\n",
208
+ " <td>73.03</td>\n",
209
+ " <td>0.64</td>\n",
210
+ " <td>8.77</td>\n",
211
+ " <td>0.0</td>\n",
212
+ " <td>0.0</td>\n",
213
+ " <td>1</td>\n",
214
+ " </tr>\n",
215
+ " </tbody>\n",
216
+ "</table>\n",
217
+ "</div>\n",
218
+ " <div class=\"colab-df-buttons\">\n",
219
+ "\n",
220
+ " <div class=\"colab-df-container\">\n",
221
+ " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-cbce004c-2373-4269-b108-792cb1bca131')\"\n",
222
+ " title=\"Convert this dataframe to an interactive table.\"\n",
223
+ " style=\"display:none;\">\n",
224
+ "\n",
225
+ " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
226
+ " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
227
+ " </svg>\n",
228
+ " </button>\n",
229
+ "\n",
230
+ " <style>\n",
231
+ " .colab-df-container {\n",
232
+ " display:flex;\n",
233
+ " gap: 12px;\n",
234
+ " }\n",
235
+ "\n",
236
+ " .colab-df-convert {\n",
237
+ " background-color: #E8F0FE;\n",
238
+ " border: none;\n",
239
+ " border-radius: 50%;\n",
240
+ " cursor: pointer;\n",
241
+ " display: none;\n",
242
+ " fill: #1967D2;\n",
243
+ " height: 32px;\n",
244
+ " padding: 0 0 0 0;\n",
245
+ " width: 32px;\n",
246
+ " }\n",
247
+ "\n",
248
+ " .colab-df-convert:hover {\n",
249
+ " background-color: #E2EBFA;\n",
250
+ " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
251
+ " fill: #174EA6;\n",
252
+ " }\n",
253
+ "\n",
254
+ " .colab-df-buttons div {\n",
255
+ " margin-bottom: 4px;\n",
256
+ " }\n",
257
+ "\n",
258
+ " [theme=dark] .colab-df-convert {\n",
259
+ " background-color: #3B4455;\n",
260
+ " fill: #D2E3FC;\n",
261
+ " }\n",
262
+ "\n",
263
+ " [theme=dark] .colab-df-convert:hover {\n",
264
+ " background-color: #434B5C;\n",
265
+ " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
266
+ " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
267
+ " fill: #FFFFFF;\n",
268
+ " }\n",
269
+ " </style>\n",
270
+ "\n",
271
+ " <script>\n",
272
+ " const buttonEl =\n",
273
+ " document.querySelector('#df-cbce004c-2373-4269-b108-792cb1bca131 button.colab-df-convert');\n",
274
+ " buttonEl.style.display =\n",
275
+ " google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
276
+ "\n",
277
+ " async function convertToInteractive(key) {\n",
278
+ " const element = document.querySelector('#df-cbce004c-2373-4269-b108-792cb1bca131');\n",
279
+ " const dataTable =\n",
280
+ " await google.colab.kernel.invokeFunction('convertToInteractive',\n",
281
+ " [key], {});\n",
282
+ " if (!dataTable) return;\n",
283
+ "\n",
284
+ " const docLinkHtml = 'Like what you see? Visit the ' +\n",
285
+ " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
286
+ " + ' to learn more about interactive tables.';\n",
287
+ " element.innerHTML = '';\n",
288
+ " dataTable['output_type'] = 'display_data';\n",
289
+ " await google.colab.output.renderOutput(dataTable, element);\n",
290
+ " const docLink = document.createElement('div');\n",
291
+ " docLink.innerHTML = docLinkHtml;\n",
292
+ " element.appendChild(docLink);\n",
293
+ " }\n",
294
+ " </script>\n",
295
+ " </div>\n",
296
+ "\n",
297
+ "\n",
298
+ "<div id=\"df-5f58b948-c3a9-4d61-8174-2c1825c6237e\">\n",
299
+ " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-5f58b948-c3a9-4d61-8174-2c1825c6237e')\"\n",
300
+ " title=\"Suggest charts\"\n",
301
+ " style=\"display:none;\">\n",
302
+ "\n",
303
+ "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
304
+ " width=\"24px\">\n",
305
+ " <g>\n",
306
+ " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
307
+ " </g>\n",
308
+ "</svg>\n",
309
+ " </button>\n",
310
+ "\n",
311
+ "<style>\n",
312
+ " .colab-df-quickchart {\n",
313
+ " --bg-color: #E8F0FE;\n",
314
+ " --fill-color: #1967D2;\n",
315
+ " --hover-bg-color: #E2EBFA;\n",
316
+ " --hover-fill-color: #174EA6;\n",
317
+ " --disabled-fill-color: #AAA;\n",
318
+ " --disabled-bg-color: #DDD;\n",
319
+ " }\n",
320
+ "\n",
321
+ " [theme=dark] .colab-df-quickchart {\n",
322
+ " --bg-color: #3B4455;\n",
323
+ " --fill-color: #D2E3FC;\n",
324
+ " --hover-bg-color: #434B5C;\n",
325
+ " --hover-fill-color: #FFFFFF;\n",
326
+ " --disabled-bg-color: #3B4455;\n",
327
+ " --disabled-fill-color: #666;\n",
328
+ " }\n",
329
+ "\n",
330
+ " .colab-df-quickchart {\n",
331
+ " background-color: var(--bg-color);\n",
332
+ " border: none;\n",
333
+ " border-radius: 50%;\n",
334
+ " cursor: pointer;\n",
335
+ " display: none;\n",
336
+ " fill: var(--fill-color);\n",
337
+ " height: 32px;\n",
338
+ " padding: 0;\n",
339
+ " width: 32px;\n",
340
+ " }\n",
341
+ "\n",
342
+ " .colab-df-quickchart:hover {\n",
343
+ " background-color: var(--hover-bg-color);\n",
344
+ " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
345
+ " fill: var(--button-hover-fill-color);\n",
346
+ " }\n",
347
+ "\n",
348
+ " .colab-df-quickchart-complete:disabled,\n",
349
+ " .colab-df-quickchart-complete:disabled:hover {\n",
350
+ " background-color: var(--disabled-bg-color);\n",
351
+ " fill: var(--disabled-fill-color);\n",
352
+ " box-shadow: none;\n",
353
+ " }\n",
354
+ "\n",
355
+ " .colab-df-spinner {\n",
356
+ " border: 2px solid var(--fill-color);\n",
357
+ " border-color: transparent;\n",
358
+ " border-bottom-color: var(--fill-color);\n",
359
+ " animation:\n",
360
+ " spin 1s steps(1) infinite;\n",
361
+ " }\n",
362
+ "\n",
363
+ " @keyframes spin {\n",
364
+ " 0% {\n",
365
+ " border-color: transparent;\n",
366
+ " border-bottom-color: var(--fill-color);\n",
367
+ " border-left-color: var(--fill-color);\n",
368
+ " }\n",
369
+ " 20% {\n",
370
+ " border-color: transparent;\n",
371
+ " border-left-color: var(--fill-color);\n",
372
+ " border-top-color: var(--fill-color);\n",
373
+ " }\n",
374
+ " 30% {\n",
375
+ " border-color: transparent;\n",
376
+ " border-left-color: var(--fill-color);\n",
377
+ " border-top-color: var(--fill-color);\n",
378
+ " border-right-color: var(--fill-color);\n",
379
+ " }\n",
380
+ " 40% {\n",
381
+ " border-color: transparent;\n",
382
+ " border-right-color: var(--fill-color);\n",
383
+ " border-top-color: var(--fill-color);\n",
384
+ " }\n",
385
+ " 60% {\n",
386
+ " border-color: transparent;\n",
387
+ " border-right-color: var(--fill-color);\n",
388
+ " }\n",
389
+ " 80% {\n",
390
+ " border-color: transparent;\n",
391
+ " border-right-color: var(--fill-color);\n",
392
+ " border-bottom-color: var(--fill-color);\n",
393
+ " }\n",
394
+ " 90% {\n",
395
+ " border-color: transparent;\n",
396
+ " border-bottom-color: var(--fill-color);\n",
397
+ " }\n",
398
+ " }\n",
399
+ "</style>\n",
400
+ "\n",
401
+ " <script>\n",
402
+ " async function quickchart(key) {\n",
403
+ " const quickchartButtonEl =\n",
404
+ " document.querySelector('#' + key + ' button');\n",
405
+ " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
406
+ " quickchartButtonEl.classList.add('colab-df-spinner');\n",
407
+ " try {\n",
408
+ " const charts = await google.colab.kernel.invokeFunction(\n",
409
+ " 'suggestCharts', [key], {});\n",
410
+ " } catch (error) {\n",
411
+ " console.error('Error during call to suggestCharts:', error);\n",
412
+ " }\n",
413
+ " quickchartButtonEl.classList.remove('colab-df-spinner');\n",
414
+ " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
415
+ " }\n",
416
+ " (() => {\n",
417
+ " let quickchartButtonEl =\n",
418
+ " document.querySelector('#df-5f58b948-c3a9-4d61-8174-2c1825c6237e button');\n",
419
+ " quickchartButtonEl.style.display =\n",
420
+ " google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
421
+ " })();\n",
422
+ " </script>\n",
423
+ "</div>\n",
424
+ "\n",
425
+ " </div>\n",
426
+ " </div>\n"
427
+ ]
428
+ },
429
+ "metadata": {},
430
+ "execution_count": 3
431
+ }
432
+ ],
433
+ "source": [
434
+ "import pandas as pd\n",
435
+ "glass_df = pd.read_csv(\"/content/glass/glass.csv\")\n",
436
+ "glass_df = glass_df.sample(frac = 1)\n",
437
+ "glass_df.head(3)"
438
+ ]
439
+ },
440
+ {
441
+ "cell_type": "code",
442
+ "source": [
443
+ "from sklearn.model_selection import train_test_split\n",
444
+ "\n",
445
+ "X = glass_df.drop(\"Type\",axis=1)\n",
446
+ "y = glass_df.Type\n",
447
+ "\n",
448
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=125)"
449
+ ],
450
+ "metadata": {
451
+ "id": "7_eWUKS6hV2o"
452
+ },
453
+ "execution_count": 4,
454
+ "outputs": []
455
+ },
456
+ {
457
+ "cell_type": "code",
458
+ "source": [
459
+ "from sklearn.ensemble import RandomForestClassifier\n",
460
+ "from sklearn.preprocessing import StandardScaler\n",
461
+ "from sklearn.impute import SimpleImputer\n",
462
+ "from sklearn.pipeline import Pipeline\n",
463
+ "\n",
464
+ "\n",
465
+ "pipe = Pipeline(\n",
466
+ " steps=[\n",
467
+ " (\"imputer\", SimpleImputer()),\n",
468
+ " (\"scaler\", StandardScaler()),\n",
469
+ " (\"model\", RandomForestClassifier(n_estimators=100, random_state=125)),\n",
470
+ " ]\n",
471
+ ")\n",
472
+ "pipe.fit(X_train, y_train)\n",
473
+ "\n",
474
+ "pipe.score(X_test, y_test)"
475
+ ],
476
+ "metadata": {
477
+ "colab": {
478
+ "base_uri": "https://localhost:8080/"
479
+ },
480
+ "id": "MTMLGHGuhvAA",
481
+ "outputId": "cb35ca9e-8e24-49ec-8c9b-06d195905fd1"
482
+ },
483
+ "execution_count": 5,
484
+ "outputs": [
485
+ {
486
+ "output_type": "execute_result",
487
+ "data": {
488
+ "text/plain": [
489
+ "0.8"
490
+ ]
491
+ },
492
+ "metadata": {},
493
+ "execution_count": 5
494
+ }
495
+ ]
496
+ },
497
+ {
498
+ "cell_type": "code",
499
+ "source": [
500
+ "from sklearn.metrics import classification_report\n",
501
+ "\n",
502
+ "y_pred = pipe.predict(X_test)\n",
503
+ "print(classification_report(y_test,y_pred))"
504
+ ],
505
+ "metadata": {
506
+ "colab": {
507
+ "base_uri": "https://localhost:8080/"
508
+ },
509
+ "id": "EREHPUy_h0Zq",
510
+ "outputId": "46d7bc64-0ddb-4be1-fbfb-b43c7ded4e35"
511
+ },
512
+ "execution_count": 6,
513
+ "outputs": [
514
+ {
515
+ "output_type": "stream",
516
+ "name": "stdout",
517
+ "text": [
518
+ " precision recall f1-score support\n",
519
+ "\n",
520
+ " 1 0.81 0.92 0.86 24\n",
521
+ " 2 0.75 0.88 0.81 17\n",
522
+ " 3 0.67 0.25 0.36 8\n",
523
+ " 5 0.67 0.67 0.67 3\n",
524
+ " 6 1.00 1.00 1.00 3\n",
525
+ " 7 0.89 0.80 0.84 10\n",
526
+ "\n",
527
+ " accuracy 0.80 65\n",
528
+ " macro avg 0.80 0.75 0.76 65\n",
529
+ "weighted avg 0.79 0.80 0.78 65\n",
530
+ "\n"
531
+ ]
532
+ }
533
+ ]
534
+ },
535
+ {
536
+ "cell_type": "code",
537
+ "source": [
538
+ "!pip install skops"
539
+ ],
540
+ "metadata": {
541
+ "colab": {
542
+ "base_uri": "https://localhost:8080/"
543
+ },
544
+ "id": "56jjXsBxiAiB",
545
+ "outputId": "27f71a89-8eec-4e8a-b23b-f3f1f7329cbe"
546
+ },
547
+ "execution_count": 8,
548
+ "outputs": [
549
+ {
550
+ "output_type": "stream",
551
+ "name": "stdout",
552
+ "text": [
553
+ "Collecting skops\n",
554
+ " Downloading skops-0.9.0-py3-none-any.whl (120 kB)\n",
555
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m120.7/120.7 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
556
+ "\u001b[?25hRequirement already satisfied: scikit-learn>=0.24 in /usr/local/lib/python3.10/dist-packages (from skops) (1.2.2)\n",
557
+ "Requirement already satisfied: huggingface-hub>=0.17.0 in /usr/local/lib/python3.10/dist-packages (from skops) (0.19.4)\n",
558
+ "Requirement already satisfied: tabulate>=0.8.8 in /usr/local/lib/python3.10/dist-packages (from skops) (0.9.0)\n",
559
+ "Requirement already satisfied: packaging>=17.0 in /usr/local/lib/python3.10/dist-packages (from skops) (23.2)\n",
560
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (3.13.1)\n",
561
+ "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (2023.6.0)\n",
562
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (2.31.0)\n",
563
+ "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (4.66.1)\n",
564
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (6.0.1)\n",
565
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (4.5.0)\n",
566
+ "Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (1.23.5)\n",
567
+ "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (1.11.4)\n",
568
+ "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (1.3.2)\n",
569
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (3.2.0)\n",
570
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (3.3.2)\n",
571
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (3.6)\n",
572
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (2.0.7)\n",
573
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (2023.11.17)\n",
574
+ "Installing collected packages: skops\n",
575
+ "Successfully installed skops-0.9.0\n"
576
+ ]
577
+ }
578
+ ]
579
+ },
580
+ {
581
+ "cell_type": "code",
582
+ "source": [
583
+ "import skops.io as sio\n",
584
+ "sio.dump(pipe, \"glass_pipeline.skops\")"
585
+ ],
586
+ "metadata": {
587
+ "id": "wZARmF26h4S9"
588
+ },
589
+ "execution_count": 9,
590
+ "outputs": []
591
+ },
592
+ {
593
+ "cell_type": "code",
594
+ "source": [
595
+ "sio.load(\"glass_pipeline.skops\", trusted=True)\n"
596
+ ],
597
+ "metadata": {
598
+ "colab": {
599
+ "base_uri": "https://localhost:8080/",
600
+ "height": 161
601
+ },
602
+ "id": "DQ1zj-mjiIRL",
603
+ "outputId": "00d4ebb0-2f95-45f7-972f-05c257a3af53"
604
+ },
605
+ "execution_count": 10,
606
+ "outputs": [
607
+ {
608
+ "output_type": "execute_result",
609
+ "data": {
610
+ "text/plain": [
611
+ "Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),\n",
612
+ " ('model', RandomForestClassifier(random_state=125))])"
613
+ ],
614
+ "text/html": [
615
+ "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"β–Έ\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"β–Ύ\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),\n",
616
+ " (&#x27;model&#x27;, RandomForestClassifier(random_state=125))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),\n",
617
+ " (&#x27;model&#x27;, RandomForestClassifier(random_state=125))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestClassifier</label><div class=\"sk-toggleable__content\"><pre>RandomForestClassifier(random_state=125)</pre></div></div></div></div></div></div></div>"
618
+ ]
619
+ },
620
+ "metadata": {},
621
+ "execution_count": 10
622
+ }
623
+ ]
624
+ },
625
+ {
626
+ "cell_type": "code",
627
+ "source": [
628
+ "!pip install gradio"
629
+ ],
630
+ "metadata": {
631
+ "colab": {
632
+ "base_uri": "https://localhost:8080/"
633
+ },
634
+ "id": "beFfVpBQiWMo",
635
+ "outputId": "2ade8915-50a8-44c2-c53a-b7bd0583f8fb"
636
+ },
637
+ "execution_count": 12,
638
+ "outputs": [
639
+ {
640
+ "output_type": "stream",
641
+ "name": "stdout",
642
+ "text": [
643
+ "Collecting gradio\n",
644
+ " Downloading gradio-4.12.0-py3-none-any.whl (16.6 MB)\n",
645
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.6/16.6 MB\u001b[0m \u001b[31m42.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
646
+ "\u001b[?25hCollecting aiofiles<24.0,>=22.0 (from gradio)\n",
647
+ " Downloading aiofiles-23.2.1-py3-none-any.whl (15 kB)\n",
648
+ "Requirement already satisfied: altair<6.0,>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.2.2)\n",
649
+ "Collecting fastapi (from gradio)\n",
650
+ " Downloading fastapi-0.108.0-py3-none-any.whl (92 kB)\n",
651
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.0/92.0 kB\u001b[0m \u001b[31m12.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
652
+ "\u001b[?25hCollecting ffmpy (from gradio)\n",
653
+ " Downloading ffmpy-0.3.1.tar.gz (5.5 kB)\n",
654
+ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
655
+ "Collecting gradio-client==0.8.0 (from gradio)\n",
656
+ " Downloading gradio_client-0.8.0-py3-none-any.whl (305 kB)\n",
657
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m305.1/305.1 kB\u001b[0m \u001b[31m30.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
658
+ "\u001b[?25hCollecting httpx (from gradio)\n",
659
+ " Downloading httpx-0.26.0-py3-none-any.whl (75 kB)\n",
660
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.9/75.9 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
661
+ "\u001b[?25hRequirement already satisfied: huggingface-hub>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.19.4)\n",
662
+ "Requirement already satisfied: importlib-resources<7.0,>=1.3 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.1.1)\n",
663
+ "Requirement already satisfied: jinja2<4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.1.2)\n",
664
+ "Requirement already satisfied: markupsafe~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.1.3)\n",
665
+ "Requirement already satisfied: matplotlib~=3.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.7.1)\n",
666
+ "Requirement already satisfied: numpy~=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.23.5)\n",
667
+ "Collecting orjson~=3.0 (from gradio)\n",
668
+ " Downloading orjson-3.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138 kB)\n",
669
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.7/138.7 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
670
+ "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from gradio) (23.2)\n",
671
+ "Requirement already satisfied: pandas<3.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.5.3)\n",
672
+ "Requirement already satisfied: pillow<11.0,>=8.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (9.4.0)\n",
673
+ "Collecting pydantic>=2.0 (from gradio)\n",
674
+ " Downloading pydantic-2.5.3-py3-none-any.whl (381 kB)\n",
675
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m381.9/381.9 kB\u001b[0m \u001b[31m34.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
676
+ "\u001b[?25hCollecting pydub (from gradio)\n",
677
+ " Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
678
+ "Collecting python-multipart (from gradio)\n",
679
+ " Downloading python_multipart-0.0.6-py3-none-any.whl (45 kB)\n",
680
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
681
+ "\u001b[?25hRequirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0.1)\n",
682
+ "Collecting semantic-version~=2.0 (from gradio)\n",
683
+ " Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n",
684
+ "Collecting tomlkit==0.12.0 (from gradio)\n",
685
+ " Downloading tomlkit-0.12.0-py3-none-any.whl (37 kB)\n",
686
+ "Requirement already satisfied: typer[all]<1.0,>=0.9 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.9.0)\n",
687
+ "Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.5.0)\n",
688
+ "Collecting uvicorn>=0.14.0 (from gradio)\n",
689
+ " Downloading uvicorn-0.25.0-py3-none-any.whl (60 kB)\n",
690
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.3/60.3 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
691
+ "\u001b[?25hRequirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from gradio-client==0.8.0->gradio) (2023.6.0)\n",
692
+ "Collecting websockets<12.0,>=10.0 (from gradio-client==0.8.0->gradio)\n",
693
+ " Downloading websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (129 kB)\n",
694
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
695
+ "\u001b[?25hRequirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.4)\n",
696
+ "Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (4.19.2)\n",
697
+ "Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.12.0)\n",
698
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.3->gradio) (3.13.1)\n",
699
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.3->gradio) (2.31.0)\n",
700
+ "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.3->gradio) (4.66.1)\n",
701
+ "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.2.0)\n",
702
+ "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (0.12.1)\n",
703
+ "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (4.46.0)\n",
704
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.4.5)\n",
705
+ "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (3.1.1)\n",
706
+ "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (2.8.2)\n",
707
+ "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0,>=1.0->gradio) (2023.3.post1)\n",
708
+ "Collecting annotated-types>=0.4.0 (from pydantic>=2.0->gradio)\n",
709
+ " Downloading annotated_types-0.6.0-py3-none-any.whl (12 kB)\n",
710
+ "Collecting pydantic-core==2.14.6 (from pydantic>=2.0->gradio)\n",
711
+ " Downloading pydantic_core-2.14.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB)\n",
712
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m40.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
713
+ "\u001b[?25hCollecting typing-extensions~=4.0 (from gradio)\n",
714
+ " Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB)\n",
715
+ "Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/lib/python3.10/dist-packages (from typer[all]<1.0,>=0.9->gradio) (8.1.7)\n",
716
+ "Collecting colorama<0.5.0,>=0.4.3 (from typer[all]<1.0,>=0.9->gradio)\n",
717
+ " Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
718
+ "Collecting shellingham<2.0.0,>=1.3.0 (from typer[all]<1.0,>=0.9->gradio)\n",
719
+ " Downloading shellingham-1.5.4-py2.py3-none-any.whl (9.8 kB)\n",
720
+ "Requirement already satisfied: rich<14.0.0,>=10.11.0 in /usr/local/lib/python3.10/dist-packages (from typer[all]<1.0,>=0.9->gradio) (13.7.0)\n",
721
+ "Collecting h11>=0.8 (from uvicorn>=0.14.0->gradio)\n",
722
+ " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
723
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
724
+ "\u001b[?25hCollecting starlette<0.33.0,>=0.29.0 (from fastapi->gradio)\n",
725
+ " Downloading starlette-0.32.0.post1-py3-none-any.whl (70 kB)\n",
726
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.0/70.0 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
727
+ "\u001b[?25hRequirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (3.7.1)\n",
728
+ "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (2023.11.17)\n",
729
+ "Collecting httpcore==1.* (from httpx->gradio)\n",
730
+ " Downloading httpcore-1.0.2-py3-none-any.whl (76 kB)\n",
731
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.9/76.9 kB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
732
+ "\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (3.6)\n",
733
+ "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.3.0)\n",
734
+ "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (23.1.0)\n",
735
+ "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (2023.11.2)\n",
736
+ "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.32.0)\n",
737
+ "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.15.2)\n",
738
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib~=3.0->gradio) (1.16.0)\n",
739
+ "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (3.0.0)\n",
740
+ "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (2.16.1)\n",
741
+ "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->httpx->gradio) (1.2.0)\n",
742
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.19.3->gradio) (3.3.2)\n",
743
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.19.3->gradio) (2.0.7)\n",
744
+ "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (0.1.2)\n",
745
+ "Building wheels for collected packages: ffmpy\n",
746
+ " Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
747
+ " Created wheel for ffmpy: filename=ffmpy-0.3.1-py3-none-any.whl size=5579 sha256=88940a0ba2d1088e0d93a684f25374ff2dfc47a1278ffaa94013d7b19a45d13f\n",
748
+ " Stored in directory: /root/.cache/pip/wheels/01/a6/d1/1c0828c304a4283b2c1639a09ad86f83d7c487ef34c6b4a1bf\n",
749
+ "Successfully built ffmpy\n",
750
+ "Installing collected packages: pydub, ffmpy, websockets, typing-extensions, tomlkit, shellingham, semantic-version, python-multipart, orjson, h11, colorama, annotated-types, aiofiles, uvicorn, starlette, pydantic-core, httpcore, pydantic, httpx, gradio-client, fastapi, gradio\n",
751
+ " Attempting uninstall: typing-extensions\n",
752
+ " Found existing installation: typing_extensions 4.5.0\n",
753
+ " Uninstalling typing_extensions-4.5.0:\n",
754
+ " Successfully uninstalled typing_extensions-4.5.0\n",
755
+ " Attempting uninstall: pydantic\n",
756
+ " Found existing installation: pydantic 1.10.13\n",
757
+ " Uninstalling pydantic-1.10.13:\n",
758
+ " Successfully uninstalled pydantic-1.10.13\n",
759
+ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
760
+ "lida 0.0.10 requires kaleido, which is not installed.\n",
761
+ "llmx 0.0.15a0 requires cohere, which is not installed.\n",
762
+ "llmx 0.0.15a0 requires openai, which is not installed.\n",
763
+ "llmx 0.0.15a0 requires tiktoken, which is not installed.\n",
764
+ "tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
765
+ "\u001b[0mSuccessfully installed aiofiles-23.2.1 annotated-types-0.6.0 colorama-0.4.6 fastapi-0.108.0 ffmpy-0.3.1 gradio-4.12.0 gradio-client-0.8.0 h11-0.14.0 httpcore-1.0.2 httpx-0.26.0 orjson-3.9.10 pydantic-2.5.3 pydantic-core-2.14.6 pydub-0.25.1 python-multipart-0.0.6 semantic-version-2.10.0 shellingham-1.5.4 starlette-0.32.0.post1 tomlkit-0.12.0 typing-extensions-4.9.0 uvicorn-0.25.0 websockets-11.0.3\n"
766
+ ]
767
+ }
768
+ ]
769
+ },
770
+ {
771
+ "cell_type": "code",
772
+ "source": [
773
+ "!pip install --upgrade typing\n",
774
+ "\n"
775
+ ],
776
+ "metadata": {
777
+ "colab": {
778
+ "base_uri": "https://localhost:8080/",
779
+ "height": 324
780
+ },
781
+ "id": "hkRt-nm-i7n3",
782
+ "outputId": "c5674dce-ad3d-4d5b-c6e5-2c6b32b1f8dd"
783
+ },
784
+ "execution_count": 16,
785
+ "outputs": [
786
+ {
787
+ "output_type": "stream",
788
+ "name": "stdout",
789
+ "text": [
790
+ "Collecting typing\n",
791
+ " Downloading typing-3.7.4.3.tar.gz (78 kB)\n",
792
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.6/78.6 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
793
+ "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
794
+ "Building wheels for collected packages: typing\n",
795
+ " Building wheel for typing (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
796
+ " Created wheel for typing: filename=typing-3.7.4.3-py3-none-any.whl size=26304 sha256=bf404f3c867298c09d5af2c5776ea8cc26cf0f9dd1dddf01a02d6bf8226939a3\n",
797
+ " Stored in directory: /root/.cache/pip/wheels/7c/d0/9e/1f26ebb66d9e1732e4098bc5a6c2d91f6c9a529838f0284890\n",
798
+ "Successfully built typing\n",
799
+ "Installing collected packages: typing\n",
800
+ "Successfully installed typing-3.7.4.3\n"
801
+ ]
802
+ },
803
+ {
804
+ "output_type": "display_data",
805
+ "data": {
806
+ "application/vnd.colab-display-data+json": {
807
+ "pip_warning": {
808
+ "packages": [
809
+ "typing"
810
+ ]
811
+ }
812
+ }
813
+ },
814
+ "metadata": {}
815
+ }
816
+ ]
817
+ },
818
+ {
819
+ "cell_type": "code",
820
+ "source": [
821
+ "import gradio as gr\n",
822
+ "import skops.io as sio\n",
823
+ "\n",
824
+ "pipe = sio.load(\"glass_pipeline.skops\", trusted=True)\n",
825
+ "\n",
826
+ "classes = [\n",
827
+ " \"None\",\n",
828
+ " \"Building Windows Float Processed\",\n",
829
+ " \"Building Windows Non Float Processed\",\n",
830
+ " \"Vehicle Windows Float Processed\",\n",
831
+ " \"Vehicle Windows Non Float Processed\",\n",
832
+ " \"Containers\",\n",
833
+ " \"Tableware\",\n",
834
+ " \"Headlamps\",\n",
835
+ "]\n",
836
+ "\n",
837
+ "\n",
838
+ "def classifier(RI, Na, Mg, Al, Si, K, Ca, Ba, Fe):\n",
839
+ " pred_glass = pipe.predict([[RI, Na, Mg, Al, Si, K, Ca, Ba, Fe]])[0]\n",
840
+ " label = f\"Predicted Glass label: **{classes[pred_glass]}**\"\n",
841
+ " return label\n",
842
+ "\n",
843
+ "\n",
844
+ "inputs = [\n",
845
+ " gr.Slider(1.51, 1.54, step=0.01, label=\"Refractive Index\"),\n",
846
+ " gr.Slider(10, 17, step=1, label=\"Sodium\"),\n",
847
+ " gr.Slider(0, 4.5, step=0.5, label=\"Magnesium\"),\n",
848
+ " gr.Slider(0.3, 3.5, step=0.1, label=\"Aluminum\"),\n",
849
+ " gr.Slider(69.8, 75.4, step=0.1, label=\"Silicon\"),\n",
850
+ " gr.Slider(0, 6.2, step=0.1, label=\"Potassium\"),\n",
851
+ " gr.Slider(5.4, 16.19, step=0.1, label=\"Calcium\"),\n",
852
+ " gr.Slider(0, 3, step=0.1, label=\"Barium\"),\n",
853
+ " gr.Slider(0, 0.5, step=0.1, label=\"Iron\"),\n",
854
+ "]\n",
855
+ "outputs = [gr.Label(num_top_classes=7)]\n",
856
+ "\n",
857
+ "title = \"Glass Classification\"\n",
858
+ "description = \"Enter the details to correctly identify glass type?\"\n",
859
+ "\n",
860
+ "gr.Interface(\n",
861
+ " fn=classifier,\n",
862
+ " inputs=inputs,\n",
863
+ " outputs=outputs,\n",
864
+ " title=title,\n",
865
+ " description=description,\n",
866
+ ").launch()"
867
+ ],
868
+ "metadata": {
869
+ "colab": {
870
+ "base_uri": "https://localhost:8080/",
871
+ "height": 1000
872
+ },
873
+ "id": "A8KXp_EFiS1U",
874
+ "outputId": "c021cdbf-b938-4951-f5e7-8bc0988e9d8a"
875
+ },
876
+ "execution_count": 1,
877
+ "outputs": [
878
+ {
879
+ "output_type": "stream",
880
+ "name": "stderr",
881
+ "text": [
882
+ "Exception in thread Thread-5 (attachment_entry):\n",
883
+ "Traceback (most recent call last):\n",
884
+ " File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 237, in listen\n",
885
+ " sock, _ = endpoints_listener.accept()\n",
886
+ " File \"/usr/lib/python3.10/socket.py\", line 293, in accept\n",
887
+ " fd, addr = self._accept()\n",
888
+ "TimeoutError: timed out\n",
889
+ "\n",
890
+ "During handling of the above exception, another exception occurred:\n",
891
+ "\n",
892
+ "Traceback (most recent call last):\n",
893
+ " File \"/usr/lib/python3.10/threading.py\", line 1016, in _bootstrap_inner\n",
894
+ " self.run()\n",
895
+ " File \"/usr/lib/python3.10/threading.py\", line 953, in run\n",
896
+ " self._target(*self._args, **self._kwargs)\n",
897
+ " File \"/usr/local/lib/python3.10/dist-packages/google/colab/_debugpy.py\", line 52, in attachment_entry\n",
898
+ " debugpy.listen(_dap_port)\n",
899
+ " File \"/usr/local/lib/python3.10/dist-packages/debugpy/public_api.py\", line 31, in wrapper\n",
900
+ " return wrapped(*args, **kwargs)\n",
901
+ " File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 143, in debug\n",
902
+ " log.reraise_exception(\"{0}() failed:\", func.__name__, level=\"info\")\n",
903
+ " File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 141, in debug\n",
904
+ " return func(address, settrace_kwargs, **kwargs)\n",
905
+ " File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 251, in listen\n",
906
+ " raise RuntimeError(\"timed out waiting for adapter to connect\")\n",
907
+ "RuntimeError: timed out waiting for adapter to connect\n"
908
+ ]
909
+ },
910
+ {
911
+ "output_type": "stream",
912
+ "name": "stdout",
913
+ "text": [
914
+ "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
915
+ "\n",
916
+ "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
917
+ "Running on public URL: https://efa6ecf31e4b5a440c.gradio.live\n",
918
+ "\n",
919
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
920
+ ]
921
+ },
922
+ {
923
+ "output_type": "display_data",
924
+ "data": {
925
+ "text/plain": [
926
+ "<IPython.core.display.HTML object>"
927
+ ],
928
+ "text/html": [
929
+ "<div><iframe src=\"https://efa6ecf31e4b5a440c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
930
+ ]
931
+ },
932
+ "metadata": {}
933
+ },
934
+ {
935
+ "output_type": "execute_result",
936
+ "data": {
937
+ "text/plain": []
938
+ },
939
+ "metadata": {},
940
+ "execution_count": 1
941
+ }
942
+ ]
943
+ }
944
+ ],
945
+ "metadata": {
946
+ "colab": {
947
+ "provenance": []
948
+ },
949
+ "kernelspec": {
950
+ "display_name": "Python 3",
951
+ "name": "python3"
952
+ }
953
+ },
954
+ "nbformat": 4,
955
+ "nbformat_minor": 0
956
+ }