|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed(embed_dim, grid_size, n_cls_token=0): | 
					
						
						|  | """ | 
					
						
						|  | grid_size: int of the grid height and width | 
					
						
						|  | return: | 
					
						
						|  | pos_embed: [grid_size*grid_size, embed_dim] or [n_cls_token+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | 
					
						
						|  | """ | 
					
						
						|  | grid_h = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid_w = np.arange(grid_size, dtype=np.float32) | 
					
						
						|  | grid = np.meshgrid(grid_w, grid_h) | 
					
						
						|  | grid = np.stack(grid, axis=0) | 
					
						
						|  |  | 
					
						
						|  | grid = grid.reshape([2, 1, grid_size, grid_size]) | 
					
						
						|  | pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | 
					
						
						|  | if n_cls_token>0: | 
					
						
						|  | pos_embed = np.concatenate([np.zeros([n_cls_token, embed_dim]), pos_embed], axis=0) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) | 
					
						
						|  | emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_h, emb_w], axis=1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | 
					
						
						|  | """ | 
					
						
						|  | embed_dim: output dimension for each position | 
					
						
						|  | pos: a list of positions to be encoded: size (M,) | 
					
						
						|  | out: (M, D) | 
					
						
						|  | """ | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  | omega = np.arange(embed_dim // 2, dtype=float) | 
					
						
						|  | omega /= embed_dim / 2. | 
					
						
						|  | omega = 1. / 10000**omega | 
					
						
						|  |  | 
					
						
						|  | pos = pos.reshape(-1) | 
					
						
						|  | out = np.einsum('m,d->md', pos, omega) | 
					
						
						|  |  | 
					
						
						|  | emb_sin = np.sin(out) | 
					
						
						|  | emb_cos = np.cos(out) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_sin, emb_cos], axis=1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def interpolate_pos_embed(model, checkpoint_model): | 
					
						
						|  | if 'pos_embed' in checkpoint_model: | 
					
						
						|  | pos_embed_checkpoint = checkpoint_model['pos_embed'] | 
					
						
						|  | embedding_size = pos_embed_checkpoint.shape[-1] | 
					
						
						|  | num_patches = model.patch_embed.num_patches | 
					
						
						|  | num_extra_tokens = model.pos_embed.shape[-2] - num_patches | 
					
						
						|  |  | 
					
						
						|  | orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | new_size = int(num_patches ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | if orig_size != new_size: | 
					
						
						|  | print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) | 
					
						
						|  | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | 
					
						
						|  |  | 
					
						
						|  | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | 
					
						
						|  | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | 
					
						
						|  | pos_tokens = torch.nn.functional.interpolate( | 
					
						
						|  | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | 
					
						
						|  | pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | 
					
						
						|  | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | 
					
						
						|  | checkpoint_model['pos_embed'] = new_pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from extensions.curope import cuRoPE2D | 
					
						
						|  | RoPE2D = cuRoPE2D | 
					
						
						|  | except ImportError: | 
					
						
						|  |  | 
					
						
						|  | print("CUDA-compiled version of RoPE2D is required but could not be found. Please compile the CUDA extension before running.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RoPE2D(torch.nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, freq=100.0, F0=1.0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.base = freq | 
					
						
						|  | self.F0 = F0 | 
					
						
						|  | self.cache = {} | 
					
						
						|  |  | 
					
						
						|  | def get_cos_sin(self, D, seq_len, device, dtype): | 
					
						
						|  | if (D,seq_len,device,dtype) not in self.cache: | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) | 
					
						
						|  | t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) | 
					
						
						|  | freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) | 
					
						
						|  | freqs = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = freqs.cos() | 
					
						
						|  | sin = freqs.sin() | 
					
						
						|  | self.cache[D,seq_len,device,dtype] = (cos,sin) | 
					
						
						|  | return self.cache[D,seq_len,device,dtype] | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | def apply_rope1d(self, tokens, pos1d, cos, sin): | 
					
						
						|  | assert pos1d.ndim==2 | 
					
						
						|  | cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] | 
					
						
						|  | sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] | 
					
						
						|  | return (tokens * cos) + (self.rotate_half(tokens) * sin) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, tokens, positions): | 
					
						
						|  | """ | 
					
						
						|  | input: | 
					
						
						|  | * tokens: batch_size x nheads x ntokens x dim | 
					
						
						|  | * positions: batch_size x ntokens x 2 (y and x position of each token) | 
					
						
						|  | output: | 
					
						
						|  | * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim) | 
					
						
						|  | """ | 
					
						
						|  | tokens = tokens.to(torch.float32) | 
					
						
						|  |  | 
					
						
						|  | assert tokens.size(3)%2==0, "number of dimensions should be a multiple of two" | 
					
						
						|  | D = tokens.size(3) // 2 | 
					
						
						|  | assert positions.ndim==3 and positions.shape[-1] == 2 | 
					
						
						|  | cos, sin = self.get_cos_sin(D, int(positions.max())+1, tokens.device, tokens.dtype) | 
					
						
						|  |  | 
					
						
						|  | y, x = tokens.chunk(2, dim=-1) | 
					
						
						|  | y = self.apply_rope1d(y, positions[:,:,0], cos, sin) | 
					
						
						|  | x = self.apply_rope1d(x, positions[:,:,1], cos, sin) | 
					
						
						|  | tokens = torch.cat((y, x), dim=-1) | 
					
						
						|  | return tokens | 
					
						
						|  |  |