Spaces:
Running
Running
piotr-szleg-bards-ai
commited on
Commit
·
15822f7
1
Parent(s):
8980b16
2024-03-15 14:12:25 Publish script update
Browse files- app.py +11 -5
- app_constants.py +2 -2
- data/combined_plots.csv +0 -0
app.py
CHANGED
@@ -10,6 +10,7 @@ from pandas.api.types import is_numeric_dtype
|
|
10 |
|
11 |
from pipeline.config import LLMBoardConfig, QueriesConfig
|
12 |
from app_constants import README, JS, TIME_PERIODS_EXPLANATION_DF
|
|
|
13 |
|
14 |
queries_config = QueriesConfig()
|
15 |
|
@@ -134,9 +135,11 @@ def display_plot(plot_df_row):
|
|
134 |
def display_filtered_plot(plot_df_row):
|
135 |
row = dict(plot_df_row)
|
136 |
plot_element, plot = display_plot(plot_df_row)
|
137 |
-
plots.append((plot_element, plot, row))
|
138 |
if "description" in row and pd.notna(row["description"]):
|
139 |
-
gr.Markdown(str(row["description"]))
|
|
|
|
|
|
|
140 |
|
141 |
def filter_plots(searched_query: str):
|
142 |
searched_model_names = searched_query.split("|")
|
@@ -144,7 +147,7 @@ def filter_plots(searched_query: str):
|
|
144 |
searched_model_names = [n for n in searched_model_names if n]
|
145 |
|
146 |
results = []
|
147 |
-
for plot_display, plot, row in plots:
|
148 |
visible = True
|
149 |
if "df" in row and pd.notna(row["df"]):
|
150 |
buffer = io.StringIO(row["df"])
|
@@ -162,6 +165,9 @@ def filter_plots(searched_query: str):
|
|
162 |
visible = False
|
163 |
|
164 |
results.append(gr.Plot(plot, visible=visible))
|
|
|
|
|
|
|
165 |
|
166 |
return results
|
167 |
|
@@ -296,13 +302,13 @@ To compare the parameters more thoroughly use the filtering box on top of this p
|
|
296 |
filter_button.click(
|
297 |
fn=filter_plots,
|
298 |
inputs=filter_textbox,
|
299 |
-
outputs=[v[0] for v in plots],
|
300 |
api_name="filter_plots",
|
301 |
)
|
302 |
filter_textbox.submit(
|
303 |
fn=filter_plots,
|
304 |
inputs=filter_textbox,
|
305 |
-
outputs=[v[0] for v in plots],
|
306 |
api_name="filter_plots",
|
307 |
)
|
308 |
collapse_languages_button.click(
|
|
|
10 |
|
11 |
from pipeline.config import LLMBoardConfig, QueriesConfig
|
12 |
from app_constants import README, JS, TIME_PERIODS_EXPLANATION_DF
|
13 |
+
from itertools import chain
|
14 |
|
15 |
queries_config = QueriesConfig()
|
16 |
|
|
|
135 |
def display_filtered_plot(plot_df_row):
|
136 |
row = dict(plot_df_row)
|
137 |
plot_element, plot = display_plot(plot_df_row)
|
|
|
138 |
if "description" in row and pd.notna(row["description"]):
|
139 |
+
description_element = gr.Markdown(str(row["description"]))
|
140 |
+
else:
|
141 |
+
description_element = gr.Markdown(value="", visible=False)
|
142 |
+
plots.append((plot_element, description_element, plot, row))
|
143 |
|
144 |
def filter_plots(searched_query: str):
|
145 |
searched_model_names = searched_query.split("|")
|
|
|
147 |
searched_model_names = [n for n in searched_model_names if n]
|
148 |
|
149 |
results = []
|
150 |
+
for plot_display, description_element, plot, row in plots:
|
151 |
visible = True
|
152 |
if "df" in row and pd.notna(row["df"]):
|
153 |
buffer = io.StringIO(row["df"])
|
|
|
165 |
visible = False
|
166 |
|
167 |
results.append(gr.Plot(plot, visible=visible))
|
168 |
+
if not description_element.value:
|
169 |
+
visible = False
|
170 |
+
results.append(gr.Markdown(visible=visible))
|
171 |
|
172 |
return results
|
173 |
|
|
|
302 |
filter_button.click(
|
303 |
fn=filter_plots,
|
304 |
inputs=filter_textbox,
|
305 |
+
outputs=list(chain.from_iterable([v[0:2] for v in plots])),
|
306 |
api_name="filter_plots",
|
307 |
)
|
308 |
filter_textbox.submit(
|
309 |
fn=filter_plots,
|
310 |
inputs=filter_textbox,
|
311 |
+
outputs=list(chain.from_iterable([v[0:2] for v in plots])),
|
312 |
api_name="filter_plots",
|
313 |
)
|
314 |
collapse_languages_button.click(
|
app_constants.py
CHANGED
@@ -2,10 +2,10 @@ import pandas as pd
|
|
2 |
|
3 |
README = """
|
4 |
This project compares different large language models and their providers for real time applications and mass data processing.
|
5 |
-
While other benchmarks compare LLMs on different human intelligence tasks this benchmark
|
6 |
|
7 |
To preform evaluation we chose a task of newspaper articles summarization from [GEM/xlsum](https://huggingface.co/datasets/GEM/xlsum) dataset as it represents a very standard type of task where model has to understand unstructured natural language text, process it and output text in a specified format.
|
8 |
-
For this version we chose English, Ukrainian and Japanese languages, with Japanese representing languages using logographic alphabets. This
|
9 |
|
10 |
Each of the models was asked to summarize the text using the following prompt:
|
11 |
|
|
|
2 |
|
3 |
README = """
|
4 |
This project compares different large language models and their providers for real time applications and mass data processing.
|
5 |
+
While other benchmarks compare LLMs on different human intelligence tasks this benchmark focuses on features related to business and engineering aspects such as response times, pricing and data streaming capabilities.
|
6 |
|
7 |
To preform evaluation we chose a task of newspaper articles summarization from [GEM/xlsum](https://huggingface.co/datasets/GEM/xlsum) dataset as it represents a very standard type of task where model has to understand unstructured natural language text, process it and output text in a specified format.
|
8 |
+
For this version we chose English, Ukrainian and Japanese languages, with Japanese representing languages using logographic alphabets. This enables us to also validate the effectiveness of the LLM for different language groups.
|
9 |
|
10 |
Each of the models was asked to summarize the text using the following prompt:
|
11 |
|
data/combined_plots.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|