barbieheimer commited on
Commit
6a8d218
1 Parent(s): 7922666

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -46
app.py CHANGED
@@ -1,51 +1,19 @@
 
1
  import gradio as gr
2
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
3
 
4
- class EmotionClassifier:
5
- def __init__(self, model_name: str):
6
- self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
7
- self.tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- self.pipeline = pipeline(
9
- "text-classification",
10
- model=self.model,
11
- tokenizer=self.tokenizer,
12
- return_all_scores=True,
13
- )
14
 
 
 
 
15
 
16
- def predict(self, input_text: str):
17
- pred = self.pipeline(input_text)[0]
18
- result = {
19
- "Anger 😠": pred[0]["score"],
20
- "Joy 😂": pred[1]["score"],
21
- "Optimism 😍": pred[2]["score"],
22
- "Anger 😭": pred[3]["score"],
23
- }
24
- return result
25
 
26
-
27
- def main():
28
- model = EmotionClassifier("models/barbieheimer/MND_TweetEvalBert_model")
29
- iface = gr.Interface(
30
- fn=model.predict,
31
- inputs=gr.inputs.Textbox(
32
- lines=3,
33
- placeholder="Type a phrase that has some emotion",
34
- label="Input Text",
35
- ),
36
- outputs="label",
37
- title="Emotion Classification",
38
- examples=[
39
- "I get so down when I'm alone",
40
- "I believe that today everything will work out",
41
- "It was so dark there I was afraid to go",
42
- "I loved the gift you gave me",
43
- "I was very surprised by your presentation.",
44
- ],
45
- )
46
-
47
- iface.launch()
48
-
49
-
50
- if __name__ == "__main__":
51
- main()
 
1
+ # here are some examples for sadness, joy, anger, and optimism.
2
  import gradio as gr
 
3
 
4
+ model = "models/barbieheimer/MND_TweetEvalBert_model"
 
 
 
 
 
 
 
 
 
5
 
6
+ def predict(prompt):
7
+ completion = classifier(prompt)
8
+ return completion[0]["label"], completion[0]["score"]
9
 
10
+ examples = [
11
+ ["The movie was a bummer."],
12
+ ["I cannot wait to watch all these movies!"],
13
+ ["The ending of the movie really irks me, gives me the ick fr."],
14
+ ["The protagonist seems to have a lot of hope...."]
15
+ ]
 
 
 
16
 
17
+ gr.Interface.load("models/barbieheimer/MND_TweetEvalBert_model", fn=predict, title="Sentiment Analysis", examples=examples,
18
+ inputs=gr.inputs.Textbox(lines=5, label="Paste an Article here."),
19
+ outputs=[gr.outputs.Textbox(label="Label"),gr.outputs.Textbox(label="Score")],).launch()