Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,7 @@ import gradio as gr
|
|
2 |
import time
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
-
import ffmpeg
|
6 |
-
|
7 |
|
8 |
# Check if GPU is available
|
9 |
use_gpu = torch.cuda.is_available()
|
@@ -24,50 +23,33 @@ def extract_audio_from_m3u8(url):
|
|
24 |
except Exception as e:
|
25 |
return f"An error occurred: {e}"
|
26 |
|
27 |
-
def stop_transcription(state):
|
28 |
-
"""Function to set a stop flag."""
|
29 |
-
state["stop_requested"] = True
|
30 |
-
return state
|
31 |
-
|
32 |
def transcribe_function(audio, state, uploaded_audio, m3u8_url):
|
33 |
-
# Reset the stop request state at the start of transcription
|
34 |
-
state["stop_requested"] = False
|
35 |
-
|
36 |
if m3u8_url:
|
37 |
audio = extract_audio_from_m3u8(m3u8_url)
|
38 |
-
|
39 |
-
# Example of checking the stop state, could be integrated according to your logic
|
40 |
-
if state.get("stop_requested"):
|
41 |
-
return {"transcription_var": "Transcription stopped.", "state_var": state}
|
42 |
-
|
43 |
if uploaded_audio is not None:
|
44 |
audio = uploaded_audio
|
45 |
-
|
46 |
if not audio:
|
47 |
-
return {
|
48 |
-
|
49 |
try:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
time.sleep(1) # Simulate work being done
|
55 |
-
text = p(audio, chunk_length_s=50)["text"]
|
56 |
-
state["transcription"] += text + "\n"
|
57 |
-
return {"state_var": state, "transcription_var": state["transcription"]}
|
58 |
except Exception as e:
|
59 |
-
return {
|
60 |
-
|
|
|
|
|
61 |
def reset_output(transcription, state):
|
62 |
"""Function to reset the state to an empty string."""
|
63 |
return "", ""
|
64 |
|
65 |
-
# Your setup continues here...
|
66 |
-
|
67 |
with gr.Blocks() as demo:
|
68 |
-
state_var = gr.State(
|
69 |
-
|
70 |
-
|
71 |
with gr.Row():
|
72 |
with gr.Column():
|
73 |
microphone = gr.Audio(source="microphone", type="filepath", label="Microphone")
|
@@ -92,13 +74,5 @@ with gr.Blocks() as demo:
|
|
92 |
[transcription_var, state_var],
|
93 |
[transcription_var, state_var]
|
94 |
)
|
95 |
-
|
96 |
-
stop_button = gr.Button("Stop Transcription")
|
97 |
-
stop_button.click(
|
98 |
-
stop_transcription,
|
99 |
-
inputs=[state_var],
|
100 |
-
outputs=[state_var]
|
101 |
-
)
|
102 |
|
103 |
-
# Launch the demo as usual
|
104 |
demo.launch()
|
|
|
2 |
import time
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
+
import ffmpeg # Make sure it's ffmpeg-python
|
|
|
6 |
|
7 |
# Check if GPU is available
|
8 |
use_gpu = torch.cuda.is_available()
|
|
|
23 |
except Exception as e:
|
24 |
return f"An error occurred: {e}"
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
def transcribe_function(audio, state, uploaded_audio, m3u8_url):
|
|
|
|
|
|
|
27 |
if m3u8_url:
|
28 |
audio = extract_audio_from_m3u8(m3u8_url)
|
29 |
+
|
|
|
|
|
|
|
|
|
30 |
if uploaded_audio is not None:
|
31 |
audio = uploaded_audio
|
32 |
+
|
33 |
if not audio:
|
34 |
+
return {state_var: state, transcription_var: state} # Return a meaningful message
|
35 |
+
|
36 |
try:
|
37 |
+
time.sleep(3)
|
38 |
+
text = p(audio, chunk_length_s= 50)["text"]
|
39 |
+
state += text + "\n"
|
40 |
+
return {state_var: state, transcription_var: state}
|
|
|
|
|
|
|
|
|
41 |
except Exception as e:
|
42 |
+
return {transcription_var: "An error occurred during transcription.", state_var: state} # Handle other exceptions
|
43 |
+
|
44 |
+
# ... [most of your code remains unchanged]
|
45 |
+
|
46 |
def reset_output(transcription, state):
|
47 |
"""Function to reset the state to an empty string."""
|
48 |
return "", ""
|
49 |
|
|
|
|
|
50 |
with gr.Blocks() as demo:
|
51 |
+
state_var = gr.State("")
|
52 |
+
|
|
|
53 |
with gr.Row():
|
54 |
with gr.Column():
|
55 |
microphone = gr.Audio(source="microphone", type="filepath", label="Microphone")
|
|
|
74 |
[transcription_var, state_var],
|
75 |
[transcription_var, state_var]
|
76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
|
|
78 |
demo.launch()
|