Spaces:
Sleeping
Sleeping
barathm111
commited on
Commit
•
6225e5c
1
Parent(s):
d3a54c8
Upload app.py
Browse files
app.py
CHANGED
@@ -20,40 +20,37 @@ pipeline = transformers.pipeline(
|
|
20 |
use_auth_token=hf_token # Use the Hugging Face token here
|
21 |
)
|
22 |
|
23 |
-
#
|
24 |
-
def calculate_ranking(data):
|
25 |
-
for institution in data:
|
26 |
-
institution["Total"] = (
|
27 |
-
institution["TLR"] + institution["GO"] + institution["OI"] + institution["PR"]
|
28 |
-
)
|
29 |
-
ranked_data = sorted(data, key=lambda x: x["Total"], reverse=True)
|
30 |
-
for rank, institution in enumerate(ranked_data, start=1):
|
31 |
-
institution["Rank"] = rank
|
32 |
-
return ranked_data
|
33 |
-
|
34 |
-
# Predefined ranking data
|
35 |
example_data = [
|
36 |
{"Institution": "A", "TLR": 70, "GO": 85, "OI": 90, "PR": 75},
|
37 |
{"Institution": "B", "TLR": 80, "GO": 88, "OI": 85, "PR": 90},
|
38 |
{"Institution": "C", "TLR": 65, "GO": 80, "OI": 70, "PR": 60},
|
39 |
]
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Chatbot function
|
42 |
def chatbot_response(user_message):
|
43 |
-
#
|
44 |
-
|
45 |
-
ranked_data = calculate_ranking(example_data)
|
46 |
-
response = "Here are the ranks of the institutions:\n"
|
47 |
-
for institution in ranked_data:
|
48 |
-
response += f"Rank {institution['Rank']}: {institution['Institution']} (Total Score: {institution['Total']})\n"
|
49 |
-
return response
|
50 |
|
51 |
-
#
|
52 |
outputs = pipeline(
|
53 |
-
|
54 |
-
max_new_tokens=
|
55 |
do_sample=True,
|
56 |
-
temperature=0.7,
|
57 |
top_p=0.9,
|
58 |
)
|
59 |
return outputs[0]["generated_text"]
|
@@ -61,8 +58,8 @@ def chatbot_response(user_message):
|
|
61 |
# Gradio interface
|
62 |
def build_gradio_ui():
|
63 |
with gr.Blocks() as demo:
|
64 |
-
gr.Markdown("## Chatbot with Predefined
|
65 |
-
gr.Markdown("Ask about institution rankings or any
|
66 |
with gr.Row():
|
67 |
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
68 |
chatbot_output = gr.Textbox(label="Chatbot Response", interactive=False)
|
|
|
20 |
use_auth_token=hf_token # Use the Hugging Face token here
|
21 |
)
|
22 |
|
23 |
+
# Predefined data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
example_data = [
|
25 |
{"Institution": "A", "TLR": 70, "GO": 85, "OI": 90, "PR": 75},
|
26 |
{"Institution": "B", "TLR": 80, "GO": 88, "OI": 85, "PR": 90},
|
27 |
{"Institution": "C", "TLR": 65, "GO": 80, "OI": 70, "PR": 60},
|
28 |
]
|
29 |
|
30 |
+
# Format predefined data into a readable string
|
31 |
+
predefined_context = "Here are the institution rankings based on scores:\n"
|
32 |
+
for institution in sorted(example_data, key=lambda x: x["TLR"] + x["GO"] + x["OI"] + x["PR"], reverse=True):
|
33 |
+
total_score = institution["TLR"] + institution["GO"] + institution["OI"] + institution["PR"]
|
34 |
+
predefined_context += f"- {institution['Institution']} (Total Score: {total_score})\n"
|
35 |
+
|
36 |
+
# System prompt to provide context to the model
|
37 |
+
system_prompt = f"""You are an intelligent assistant. Here is some contextual information:
|
38 |
+
{predefined_context}
|
39 |
+
|
40 |
+
When a user asks about rankings, respond with this information. If the user asks general questions, respond appropriately.
|
41 |
+
"""
|
42 |
+
|
43 |
# Chatbot function
|
44 |
def chatbot_response(user_message):
|
45 |
+
# Combine system prompt with the user's message
|
46 |
+
full_prompt = f"{system_prompt}\nUser: {user_message}\nAssistant:"
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Generate a response using the model
|
49 |
outputs = pipeline(
|
50 |
+
full_prompt,
|
51 |
+
max_new_tokens=150, # Adjust token limit as needed
|
52 |
do_sample=True,
|
53 |
+
temperature=0.7,
|
54 |
top_p=0.9,
|
55 |
)
|
56 |
return outputs[0]["generated_text"]
|
|
|
58 |
# Gradio interface
|
59 |
def build_gradio_ui():
|
60 |
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown("## Intelligent Chatbot with Predefined Context and AI Responses")
|
62 |
+
gr.Markdown("Ask about institution rankings or any general query!")
|
63 |
with gr.Row():
|
64 |
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
65 |
chatbot_output = gr.Textbox(label="Chatbot Response", interactive=False)
|