Spaces:
Runtime error
Runtime error
Мясников Филипп Сергеевич
commited on
Commit
•
45e462d
1
Parent(s):
fab4ed0
Fix
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import gradio as gr
|
|
5 |
import torch
|
6 |
torch.backends.cudnn.benchmark = True
|
7 |
from torchvision import transforms, utils
|
8 |
-
from util import *
|
9 |
from PIL import Image
|
10 |
import math
|
11 |
import random
|
@@ -33,7 +32,6 @@ from e4e.utils.common import tensor2im
|
|
33 |
from e4e.models.psp import pSp
|
34 |
from e4e.models.encoders import psp_encoders
|
35 |
from e4e.models.stylegan2.model import Generator
|
36 |
-
from util import *
|
37 |
from huggingface_hub import hf_hub_download
|
38 |
|
39 |
import dlib
|
|
|
5 |
import torch
|
6 |
torch.backends.cudnn.benchmark = True
|
7 |
from torchvision import transforms, utils
|
|
|
8 |
from PIL import Image
|
9 |
import math
|
10 |
import random
|
|
|
32 |
from e4e.models.psp import pSp
|
33 |
from e4e.models.encoders import psp_encoders
|
34 |
from e4e.models.stylegan2.model import Generator
|
|
|
35 |
from huggingface_hub import hf_hub_download
|
36 |
|
37 |
import dlib
|
model.py
DELETED
@@ -1,688 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import random
|
3 |
-
import functools
|
4 |
-
import operator
|
5 |
-
|
6 |
-
import torch
|
7 |
-
from torch import nn
|
8 |
-
from torch.nn import functional as F
|
9 |
-
from torch.autograd import Function
|
10 |
-
|
11 |
-
from op import conv2d_gradfix
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
from op.fused_act import FusedLeakyReLU, fused_leaky_relu
|
14 |
-
from op.upfirdn2d import upfirdn2d
|
15 |
-
else:
|
16 |
-
from op.fused_act_cpu import FusedLeakyReLU, fused_leaky_relu
|
17 |
-
from op.upfirdn2d_cpu import upfirdn2d
|
18 |
-
|
19 |
-
|
20 |
-
class PixelNorm(nn.Module):
|
21 |
-
def __init__(self):
|
22 |
-
super().__init__()
|
23 |
-
|
24 |
-
def forward(self, input):
|
25 |
-
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
26 |
-
|
27 |
-
|
28 |
-
def make_kernel(k):
|
29 |
-
k = torch.tensor(k, dtype=torch.float32)
|
30 |
-
|
31 |
-
if k.ndim == 1:
|
32 |
-
k = k[None, :] * k[:, None]
|
33 |
-
|
34 |
-
k /= k.sum()
|
35 |
-
|
36 |
-
return k
|
37 |
-
|
38 |
-
|
39 |
-
class Upsample(nn.Module):
|
40 |
-
def __init__(self, kernel, factor=2):
|
41 |
-
super().__init__()
|
42 |
-
|
43 |
-
self.factor = factor
|
44 |
-
kernel = make_kernel(kernel) * (factor ** 2)
|
45 |
-
self.register_buffer("kernel", kernel)
|
46 |
-
|
47 |
-
p = kernel.shape[0] - factor
|
48 |
-
|
49 |
-
pad0 = (p + 1) // 2 + factor - 1
|
50 |
-
pad1 = p // 2
|
51 |
-
|
52 |
-
self.pad = (pad0, pad1)
|
53 |
-
|
54 |
-
def forward(self, input):
|
55 |
-
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
56 |
-
|
57 |
-
return out
|
58 |
-
|
59 |
-
|
60 |
-
class Downsample(nn.Module):
|
61 |
-
def __init__(self, kernel, factor=2):
|
62 |
-
super().__init__()
|
63 |
-
|
64 |
-
self.factor = factor
|
65 |
-
kernel = make_kernel(kernel)
|
66 |
-
self.register_buffer("kernel", kernel)
|
67 |
-
|
68 |
-
p = kernel.shape[0] - factor
|
69 |
-
|
70 |
-
pad0 = (p + 1) // 2
|
71 |
-
pad1 = p // 2
|
72 |
-
|
73 |
-
self.pad = (pad0, pad1)
|
74 |
-
|
75 |
-
def forward(self, input):
|
76 |
-
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
77 |
-
|
78 |
-
return out
|
79 |
-
|
80 |
-
|
81 |
-
class Blur(nn.Module):
|
82 |
-
def __init__(self, kernel, pad, upsample_factor=1):
|
83 |
-
super().__init__()
|
84 |
-
|
85 |
-
kernel = make_kernel(kernel)
|
86 |
-
|
87 |
-
if upsample_factor > 1:
|
88 |
-
kernel = kernel * (upsample_factor ** 2)
|
89 |
-
|
90 |
-
self.register_buffer("kernel", kernel)
|
91 |
-
|
92 |
-
self.pad = pad
|
93 |
-
|
94 |
-
def forward(self, input):
|
95 |
-
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
96 |
-
|
97 |
-
return out
|
98 |
-
|
99 |
-
|
100 |
-
class EqualConv2d(nn.Module):
|
101 |
-
def __init__(
|
102 |
-
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
103 |
-
):
|
104 |
-
super().__init__()
|
105 |
-
|
106 |
-
self.weight = nn.Parameter(
|
107 |
-
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
108 |
-
)
|
109 |
-
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
110 |
-
|
111 |
-
self.stride = stride
|
112 |
-
self.padding = padding
|
113 |
-
|
114 |
-
if bias:
|
115 |
-
self.bias = nn.Parameter(torch.zeros(out_channel))
|
116 |
-
|
117 |
-
else:
|
118 |
-
self.bias = None
|
119 |
-
|
120 |
-
def forward(self, input):
|
121 |
-
out = conv2d_gradfix.conv2d(
|
122 |
-
input,
|
123 |
-
self.weight * self.scale,
|
124 |
-
bias=self.bias,
|
125 |
-
stride=self.stride,
|
126 |
-
padding=self.padding,
|
127 |
-
)
|
128 |
-
|
129 |
-
return out
|
130 |
-
|
131 |
-
def __repr__(self):
|
132 |
-
return (
|
133 |
-
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
|
134 |
-
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
|
135 |
-
)
|
136 |
-
|
137 |
-
|
138 |
-
class EqualLinear(nn.Module):
|
139 |
-
def __init__(
|
140 |
-
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
141 |
-
):
|
142 |
-
super().__init__()
|
143 |
-
|
144 |
-
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
145 |
-
|
146 |
-
if bias:
|
147 |
-
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
148 |
-
|
149 |
-
else:
|
150 |
-
self.bias = None
|
151 |
-
|
152 |
-
self.activation = activation
|
153 |
-
|
154 |
-
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
155 |
-
self.lr_mul = lr_mul
|
156 |
-
|
157 |
-
def forward(self, input):
|
158 |
-
if self.activation:
|
159 |
-
out = F.linear(input, self.weight * self.scale)
|
160 |
-
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
161 |
-
|
162 |
-
else:
|
163 |
-
out = F.linear(
|
164 |
-
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
165 |
-
)
|
166 |
-
|
167 |
-
return out
|
168 |
-
|
169 |
-
def __repr__(self):
|
170 |
-
return (
|
171 |
-
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
|
172 |
-
)
|
173 |
-
|
174 |
-
|
175 |
-
class ModulatedConv2d(nn.Module):
|
176 |
-
def __init__(
|
177 |
-
self,
|
178 |
-
in_channel,
|
179 |
-
out_channel,
|
180 |
-
kernel_size,
|
181 |
-
style_dim,
|
182 |
-
demodulate=True,
|
183 |
-
upsample=False,
|
184 |
-
downsample=False,
|
185 |
-
blur_kernel=[1, 3, 3, 1],
|
186 |
-
fused=True,
|
187 |
-
):
|
188 |
-
super().__init__()
|
189 |
-
|
190 |
-
self.eps = 1e-8
|
191 |
-
self.kernel_size = kernel_size
|
192 |
-
self.in_channel = in_channel
|
193 |
-
self.out_channel = out_channel
|
194 |
-
self.upsample = upsample
|
195 |
-
self.downsample = downsample
|
196 |
-
|
197 |
-
if upsample:
|
198 |
-
factor = 2
|
199 |
-
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
200 |
-
pad0 = (p + 1) // 2 + factor - 1
|
201 |
-
pad1 = p // 2 + 1
|
202 |
-
|
203 |
-
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
204 |
-
|
205 |
-
if downsample:
|
206 |
-
factor = 2
|
207 |
-
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
208 |
-
pad0 = (p + 1) // 2
|
209 |
-
pad1 = p // 2
|
210 |
-
|
211 |
-
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
212 |
-
|
213 |
-
fan_in = in_channel * kernel_size ** 2
|
214 |
-
self.scale = 1 / math.sqrt(fan_in)
|
215 |
-
self.padding = kernel_size // 2
|
216 |
-
|
217 |
-
self.weight = nn.Parameter(
|
218 |
-
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
219 |
-
)
|
220 |
-
|
221 |
-
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
222 |
-
|
223 |
-
self.demodulate = demodulate
|
224 |
-
self.fused = fused
|
225 |
-
|
226 |
-
def __repr__(self):
|
227 |
-
return (
|
228 |
-
f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
|
229 |
-
f"upsample={self.upsample}, downsample={self.downsample})"
|
230 |
-
)
|
231 |
-
|
232 |
-
def forward(self, input, style):
|
233 |
-
batch, in_channel, height, width = input.shape
|
234 |
-
|
235 |
-
if not self.fused:
|
236 |
-
weight = self.scale * self.weight.squeeze(0)
|
237 |
-
style = self.modulation(style)
|
238 |
-
|
239 |
-
if self.demodulate:
|
240 |
-
w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1)
|
241 |
-
dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt()
|
242 |
-
|
243 |
-
input = input * style.reshape(batch, in_channel, 1, 1)
|
244 |
-
|
245 |
-
if self.upsample:
|
246 |
-
weight = weight.transpose(0, 1)
|
247 |
-
out = conv2d_gradfix.conv_transpose2d(
|
248 |
-
input, weight, padding=0, stride=2
|
249 |
-
)
|
250 |
-
out = self.blur(out)
|
251 |
-
|
252 |
-
elif self.downsample:
|
253 |
-
input = self.blur(input)
|
254 |
-
out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2)
|
255 |
-
|
256 |
-
else:
|
257 |
-
out = conv2d_gradfix.conv2d(input, weight, padding=self.padding)
|
258 |
-
|
259 |
-
if self.demodulate:
|
260 |
-
out = out * dcoefs.view(batch, -1, 1, 1)
|
261 |
-
|
262 |
-
return out
|
263 |
-
|
264 |
-
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
265 |
-
weight = self.scale * self.weight * style
|
266 |
-
|
267 |
-
if self.demodulate:
|
268 |
-
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
269 |
-
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
270 |
-
|
271 |
-
weight = weight.view(
|
272 |
-
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
273 |
-
)
|
274 |
-
|
275 |
-
if self.upsample:
|
276 |
-
input = input.view(1, batch * in_channel, height, width)
|
277 |
-
weight = weight.view(
|
278 |
-
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
279 |
-
)
|
280 |
-
weight = weight.transpose(1, 2).reshape(
|
281 |
-
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
282 |
-
)
|
283 |
-
out = conv2d_gradfix.conv_transpose2d(
|
284 |
-
input, weight, padding=0, stride=2, groups=batch
|
285 |
-
)
|
286 |
-
_, _, height, width = out.shape
|
287 |
-
out = out.view(batch, self.out_channel, height, width)
|
288 |
-
out = self.blur(out)
|
289 |
-
|
290 |
-
elif self.downsample:
|
291 |
-
input = self.blur(input)
|
292 |
-
_, _, height, width = input.shape
|
293 |
-
input = input.view(1, batch * in_channel, height, width)
|
294 |
-
out = conv2d_gradfix.conv2d(
|
295 |
-
input, weight, padding=0, stride=2, groups=batch
|
296 |
-
)
|
297 |
-
_, _, height, width = out.shape
|
298 |
-
out = out.view(batch, self.out_channel, height, width)
|
299 |
-
|
300 |
-
else:
|
301 |
-
input = input.view(1, batch * in_channel, height, width)
|
302 |
-
out = conv2d_gradfix.conv2d(
|
303 |
-
input, weight, padding=self.padding, groups=batch
|
304 |
-
)
|
305 |
-
_, _, height, width = out.shape
|
306 |
-
out = out.view(batch, self.out_channel, height, width)
|
307 |
-
|
308 |
-
return out
|
309 |
-
|
310 |
-
|
311 |
-
class NoiseInjection(nn.Module):
|
312 |
-
def __init__(self):
|
313 |
-
super().__init__()
|
314 |
-
|
315 |
-
self.weight = nn.Parameter(torch.zeros(1))
|
316 |
-
|
317 |
-
def forward(self, image, noise=None):
|
318 |
-
if noise is None:
|
319 |
-
batch, _, height, width = image.shape
|
320 |
-
noise = image.new_empty(batch, 1, height, width).normal_()
|
321 |
-
|
322 |
-
return image + self.weight * noise
|
323 |
-
|
324 |
-
|
325 |
-
class ConstantInput(nn.Module):
|
326 |
-
def __init__(self, channel, size=4):
|
327 |
-
super().__init__()
|
328 |
-
|
329 |
-
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
330 |
-
|
331 |
-
def forward(self, input):
|
332 |
-
batch = input.shape[0]
|
333 |
-
out = self.input.repeat(batch, 1, 1, 1)
|
334 |
-
|
335 |
-
return out
|
336 |
-
|
337 |
-
|
338 |
-
class StyledConv(nn.Module):
|
339 |
-
def __init__(
|
340 |
-
self,
|
341 |
-
in_channel,
|
342 |
-
out_channel,
|
343 |
-
kernel_size,
|
344 |
-
style_dim,
|
345 |
-
upsample=False,
|
346 |
-
blur_kernel=[1, 3, 3, 1],
|
347 |
-
demodulate=True,
|
348 |
-
):
|
349 |
-
super().__init__()
|
350 |
-
|
351 |
-
self.conv = ModulatedConv2d(
|
352 |
-
in_channel,
|
353 |
-
out_channel,
|
354 |
-
kernel_size,
|
355 |
-
style_dim,
|
356 |
-
upsample=upsample,
|
357 |
-
blur_kernel=blur_kernel,
|
358 |
-
demodulate=demodulate,
|
359 |
-
)
|
360 |
-
|
361 |
-
self.noise = NoiseInjection()
|
362 |
-
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
363 |
-
# self.activate = ScaledLeakyReLU(0.2)
|
364 |
-
self.activate = FusedLeakyReLU(out_channel)
|
365 |
-
|
366 |
-
def forward(self, input, style, noise=None):
|
367 |
-
out = self.conv(input, style)
|
368 |
-
out = self.noise(out, noise=noise)
|
369 |
-
# out = out + self.bias
|
370 |
-
out = self.activate(out)
|
371 |
-
|
372 |
-
return out
|
373 |
-
|
374 |
-
|
375 |
-
class ToRGB(nn.Module):
|
376 |
-
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
377 |
-
super().__init__()
|
378 |
-
|
379 |
-
if upsample:
|
380 |
-
self.upsample = Upsample(blur_kernel)
|
381 |
-
|
382 |
-
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
383 |
-
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
384 |
-
|
385 |
-
def forward(self, input, style, skip=None):
|
386 |
-
out = self.conv(input, style)
|
387 |
-
out = out + self.bias
|
388 |
-
|
389 |
-
if skip is not None:
|
390 |
-
skip = self.upsample(skip)
|
391 |
-
|
392 |
-
out = out + skip
|
393 |
-
|
394 |
-
return out
|
395 |
-
|
396 |
-
|
397 |
-
class Generator(nn.Module):
|
398 |
-
def __init__(
|
399 |
-
self,
|
400 |
-
size,
|
401 |
-
style_dim,
|
402 |
-
n_mlp,
|
403 |
-
channel_multiplier=2,
|
404 |
-
blur_kernel=[1, 3, 3, 1],
|
405 |
-
lr_mlp=0.01,
|
406 |
-
):
|
407 |
-
super().__init__()
|
408 |
-
|
409 |
-
self.size = size
|
410 |
-
|
411 |
-
self.style_dim = style_dim
|
412 |
-
|
413 |
-
layers = [PixelNorm()]
|
414 |
-
|
415 |
-
for i in range(n_mlp):
|
416 |
-
layers.append(
|
417 |
-
EqualLinear(
|
418 |
-
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
|
419 |
-
)
|
420 |
-
)
|
421 |
-
|
422 |
-
self.style = nn.Sequential(*layers)
|
423 |
-
|
424 |
-
self.channels = {
|
425 |
-
4: 512,
|
426 |
-
8: 512,
|
427 |
-
16: 512,
|
428 |
-
32: 512,
|
429 |
-
64: 256 * channel_multiplier,
|
430 |
-
128: 128 * channel_multiplier,
|
431 |
-
256: 64 * channel_multiplier,
|
432 |
-
512: 32 * channel_multiplier,
|
433 |
-
1024: 16 * channel_multiplier,
|
434 |
-
}
|
435 |
-
|
436 |
-
self.input = ConstantInput(self.channels[4])
|
437 |
-
self.conv1 = StyledConv(
|
438 |
-
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
439 |
-
)
|
440 |
-
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
441 |
-
|
442 |
-
self.log_size = int(math.log(size, 2))
|
443 |
-
self.num_layers = (self.log_size - 2) * 2 + 1
|
444 |
-
|
445 |
-
self.convs = nn.ModuleList()
|
446 |
-
self.upsamples = nn.ModuleList()
|
447 |
-
self.to_rgbs = nn.ModuleList()
|
448 |
-
self.noises = nn.Module()
|
449 |
-
|
450 |
-
in_channel = self.channels[4]
|
451 |
-
|
452 |
-
for layer_idx in range(self.num_layers):
|
453 |
-
res = (layer_idx + 5) // 2
|
454 |
-
shape = [1, 1, 2 ** res, 2 ** res]
|
455 |
-
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
|
456 |
-
|
457 |
-
for i in range(3, self.log_size + 1):
|
458 |
-
out_channel = self.channels[2 ** i]
|
459 |
-
|
460 |
-
self.convs.append(
|
461 |
-
StyledConv(
|
462 |
-
in_channel,
|
463 |
-
out_channel,
|
464 |
-
3,
|
465 |
-
style_dim,
|
466 |
-
upsample=True,
|
467 |
-
blur_kernel=blur_kernel,
|
468 |
-
)
|
469 |
-
)
|
470 |
-
|
471 |
-
self.convs.append(
|
472 |
-
StyledConv(
|
473 |
-
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
474 |
-
)
|
475 |
-
)
|
476 |
-
|
477 |
-
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
478 |
-
|
479 |
-
in_channel = out_channel
|
480 |
-
|
481 |
-
self.n_latent = self.log_size * 2 - 2
|
482 |
-
|
483 |
-
def make_noise(self):
|
484 |
-
device = self.input.input.device
|
485 |
-
|
486 |
-
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
487 |
-
|
488 |
-
for i in range(3, self.log_size + 1):
|
489 |
-
for _ in range(2):
|
490 |
-
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
491 |
-
|
492 |
-
return noises
|
493 |
-
|
494 |
-
@torch.no_grad()
|
495 |
-
def mean_latent(self, n_latent):
|
496 |
-
latent_in = torch.randn(
|
497 |
-
n_latent, self.style_dim, device=self.input.input.device
|
498 |
-
)
|
499 |
-
latent = self.style(latent_in).mean(0, keepdim=True)
|
500 |
-
|
501 |
-
return latent
|
502 |
-
|
503 |
-
@torch.no_grad()
|
504 |
-
def get_latent(self, input):
|
505 |
-
return self.style(input)
|
506 |
-
|
507 |
-
def forward(
|
508 |
-
self,
|
509 |
-
styles,
|
510 |
-
return_latents=False,
|
511 |
-
inject_index=None,
|
512 |
-
truncation=1,
|
513 |
-
truncation_latent=None,
|
514 |
-
input_is_latent=False,
|
515 |
-
noise=None,
|
516 |
-
randomize_noise=True,
|
517 |
-
):
|
518 |
-
|
519 |
-
if noise is None:
|
520 |
-
if randomize_noise:
|
521 |
-
noise = [None] * self.num_layers
|
522 |
-
else:
|
523 |
-
noise = [
|
524 |
-
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
525 |
-
]
|
526 |
-
|
527 |
-
if not input_is_latent:
|
528 |
-
styles = [self.style(s) for s in styles]
|
529 |
-
|
530 |
-
if truncation < 1:
|
531 |
-
style_t = []
|
532 |
-
|
533 |
-
for style in styles:
|
534 |
-
style_t.append(
|
535 |
-
truncation_latent + truncation * (style - truncation_latent)
|
536 |
-
)
|
537 |
-
|
538 |
-
styles = style_t
|
539 |
-
latent = styles[0].unsqueeze(1).repeat(1, self.n_latent, 1)
|
540 |
-
else:
|
541 |
-
latent = styles
|
542 |
-
|
543 |
-
out = self.input(latent)
|
544 |
-
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
545 |
-
|
546 |
-
skip = self.to_rgb1(out, latent[:, 1])
|
547 |
-
|
548 |
-
i = 1
|
549 |
-
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
550 |
-
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
551 |
-
):
|
552 |
-
out = conv1(out, latent[:, i], noise=noise1)
|
553 |
-
out = conv2(out, latent[:, i + 1], noise=noise2)
|
554 |
-
skip = to_rgb(out, latent[:, i + 2], skip)
|
555 |
-
|
556 |
-
i += 2
|
557 |
-
|
558 |
-
image = skip
|
559 |
-
|
560 |
-
return image
|
561 |
-
|
562 |
-
|
563 |
-
class ConvLayer(nn.Sequential):
|
564 |
-
def __init__(
|
565 |
-
self,
|
566 |
-
in_channel,
|
567 |
-
out_channel,
|
568 |
-
kernel_size,
|
569 |
-
downsample=False,
|
570 |
-
blur_kernel=[1, 3, 3, 1],
|
571 |
-
bias=True,
|
572 |
-
activate=True,
|
573 |
-
):
|
574 |
-
layers = []
|
575 |
-
|
576 |
-
if downsample:
|
577 |
-
factor = 2
|
578 |
-
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
579 |
-
pad0 = (p + 1) // 2
|
580 |
-
pad1 = p // 2
|
581 |
-
|
582 |
-
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
583 |
-
|
584 |
-
stride = 2
|
585 |
-
self.padding = 0
|
586 |
-
|
587 |
-
else:
|
588 |
-
stride = 1
|
589 |
-
self.padding = kernel_size // 2
|
590 |
-
|
591 |
-
layers.append(
|
592 |
-
EqualConv2d(
|
593 |
-
in_channel,
|
594 |
-
out_channel,
|
595 |
-
kernel_size,
|
596 |
-
padding=self.padding,
|
597 |
-
stride=stride,
|
598 |
-
bias=bias and not activate,
|
599 |
-
)
|
600 |
-
)
|
601 |
-
|
602 |
-
if activate:
|
603 |
-
layers.append(FusedLeakyReLU(out_channel, bias=bias))
|
604 |
-
|
605 |
-
super().__init__(*layers)
|
606 |
-
|
607 |
-
|
608 |
-
class ResBlock(nn.Module):
|
609 |
-
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
610 |
-
super().__init__()
|
611 |
-
|
612 |
-
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
613 |
-
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
614 |
-
|
615 |
-
self.skip = ConvLayer(
|
616 |
-
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
617 |
-
)
|
618 |
-
|
619 |
-
def forward(self, input):
|
620 |
-
out = self.conv1(input)
|
621 |
-
out = self.conv2(out)
|
622 |
-
|
623 |
-
skip = self.skip(input)
|
624 |
-
out = (out + skip) / math.sqrt(2)
|
625 |
-
|
626 |
-
return out
|
627 |
-
|
628 |
-
|
629 |
-
class Discriminator(nn.Module):
|
630 |
-
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
631 |
-
super().__init__()
|
632 |
-
|
633 |
-
channels = {
|
634 |
-
4: 512,
|
635 |
-
8: 512,
|
636 |
-
16: 512,
|
637 |
-
32: 512,
|
638 |
-
64: 256 * channel_multiplier,
|
639 |
-
128: 128 * channel_multiplier,
|
640 |
-
256: 64 * channel_multiplier,
|
641 |
-
512: 32 * channel_multiplier,
|
642 |
-
1024: 16 * channel_multiplier,
|
643 |
-
}
|
644 |
-
|
645 |
-
convs = [ConvLayer(3, channels[size], 1)]
|
646 |
-
|
647 |
-
log_size = int(math.log(size, 2))
|
648 |
-
|
649 |
-
in_channel = channels[size]
|
650 |
-
|
651 |
-
for i in range(log_size, 2, -1):
|
652 |
-
out_channel = channels[2 ** (i - 1)]
|
653 |
-
|
654 |
-
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
655 |
-
|
656 |
-
in_channel = out_channel
|
657 |
-
|
658 |
-
self.convs = nn.Sequential(*convs)
|
659 |
-
|
660 |
-
self.stddev_group = 4
|
661 |
-
self.stddev_feat = 1
|
662 |
-
|
663 |
-
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
664 |
-
self.final_linear = nn.Sequential(
|
665 |
-
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
|
666 |
-
EqualLinear(channels[4], 1),
|
667 |
-
)
|
668 |
-
|
669 |
-
def forward(self, input):
|
670 |
-
out = self.convs(input)
|
671 |
-
|
672 |
-
batch, channel, height, width = out.shape
|
673 |
-
group = min(batch, self.stddev_group)
|
674 |
-
stddev = out.view(
|
675 |
-
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
676 |
-
)
|
677 |
-
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
678 |
-
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
679 |
-
stddev = stddev.repeat(group, 1, height, width)
|
680 |
-
out = torch.cat([out, stddev], 1)
|
681 |
-
|
682 |
-
out = self.final_conv(out)
|
683 |
-
|
684 |
-
out = out.view(batch, -1)
|
685 |
-
out = self.final_linear(out)
|
686 |
-
|
687 |
-
return out
|
688 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
util.py
DELETED
@@ -1,220 +0,0 @@
|
|
1 |
-
from matplotlib import pyplot as plt
|
2 |
-
import torch
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import os
|
5 |
-
import cv2
|
6 |
-
import dlib
|
7 |
-
from PIL import Image
|
8 |
-
import numpy as np
|
9 |
-
import math
|
10 |
-
import torchvision
|
11 |
-
import scipy
|
12 |
-
import scipy.ndimage
|
13 |
-
import torchvision.transforms as transforms
|
14 |
-
|
15 |
-
from huggingface_hub import hf_hub_download
|
16 |
-
|
17 |
-
|
18 |
-
shape_predictor_path = hf_hub_download(repo_id="akhaliq/jojogan_dlib", filename="shape_predictor_68_face_landmarks.dat")
|
19 |
-
|
20 |
-
|
21 |
-
google_drive_paths = {
|
22 |
-
"models/stylegan2-ffhq-config-f.pt": "https://drive.google.com/uc?id=1Yr7KuD959btpmcKGAUsbAk5rPjX2MytK",
|
23 |
-
"models/dlibshape_predictor_68_face_landmarks.dat": "https://drive.google.com/uc?id=11BDmNKS1zxSZxkgsEvQoKgFd8J264jKp",
|
24 |
-
"models/e4e_ffhq_encode.pt": "https://drive.google.com/uc?id=1o6ijA3PkcewZvwJJ73dJ0fxhndn0nnh7",
|
25 |
-
"models/restyle_psp_ffhq_encode.pt": "https://drive.google.com/uc?id=1nbxCIVw9H3YnQsoIPykNEFwWJnHVHlVd",
|
26 |
-
"models/arcane_caitlyn.pt": "https://drive.google.com/uc?id=1gOsDTiTPcENiFOrhmkkxJcTURykW1dRc",
|
27 |
-
"models/arcane_caitlyn_preserve_color.pt": "https://drive.google.com/uc?id=1cUTyjU-q98P75a8THCaO545RTwpVV-aH",
|
28 |
-
"models/arcane_jinx_preserve_color.pt": "https://drive.google.com/uc?id=1jElwHxaYPod5Itdy18izJk49K1nl4ney",
|
29 |
-
"models/arcane_jinx.pt": "https://drive.google.com/uc?id=1quQ8vPjYpUiXM4k1_KIwP4EccOefPpG_",
|
30 |
-
"models/disney.pt": "https://drive.google.com/uc?id=1zbE2upakFUAx8ximYnLofFwfT8MilqJA",
|
31 |
-
"models/disney_preserve_color.pt": "https://drive.google.com/uc?id=1Bnh02DjfvN_Wm8c4JdOiNV4q9J7Z_tsi",
|
32 |
-
"models/jojo.pt": "https://drive.google.com/uc?id=13cR2xjIBj8Ga5jMO7gtxzIJj2PDsBYK4",
|
33 |
-
"models/jojo_preserve_color.pt": "https://drive.google.com/uc?id=1ZRwYLRytCEKi__eT2Zxv1IlV6BGVQ_K2",
|
34 |
-
"models/jojo_yasuho.pt": "https://drive.google.com/uc?id=1grZT3Gz1DLzFoJchAmoj3LoM9ew9ROX_",
|
35 |
-
"models/jojo_yasuho_preserve_color.pt": "https://drive.google.com/uc?id=1SKBu1h0iRNyeKBnya_3BBmLr4pkPeg_L",
|
36 |
-
"models/supergirl.pt": "https://drive.google.com/uc?id=1L0y9IYgzLNzB-33xTpXpecsKU-t9DpVC",
|
37 |
-
"models/supergirl_preserve_color.pt": "https://drive.google.com/uc?id=1VmKGuvThWHym7YuayXxjv0fSn32lfDpE",
|
38 |
-
}
|
39 |
-
|
40 |
-
@torch.no_grad()
|
41 |
-
def load_model(generator, model_file_path):
|
42 |
-
ensure_checkpoint_exists(model_file_path)
|
43 |
-
ckpt = torch.load(model_file_path, map_location=lambda storage, loc: storage)
|
44 |
-
generator.load_state_dict(ckpt["g_ema"], strict=False)
|
45 |
-
return generator.mean_latent(50000)
|
46 |
-
|
47 |
-
def ensure_checkpoint_exists(model_weights_filename):
|
48 |
-
if not os.path.isfile(model_weights_filename) and (
|
49 |
-
model_weights_filename in google_drive_paths
|
50 |
-
):
|
51 |
-
gdrive_url = google_drive_paths[model_weights_filename]
|
52 |
-
try:
|
53 |
-
from gdown import download as drive_download
|
54 |
-
|
55 |
-
drive_download(gdrive_url, model_weights_filename, quiet=False)
|
56 |
-
except ModuleNotFoundError:
|
57 |
-
print(
|
58 |
-
"gdown module not found.",
|
59 |
-
"pip3 install gdown or, manually download the checkpoint file:",
|
60 |
-
gdrive_url
|
61 |
-
)
|
62 |
-
|
63 |
-
if not os.path.isfile(model_weights_filename) and (
|
64 |
-
model_weights_filename not in google_drive_paths
|
65 |
-
):
|
66 |
-
print(
|
67 |
-
model_weights_filename,
|
68 |
-
" not found, you may need to manually download the model weights."
|
69 |
-
)
|
70 |
-
|
71 |
-
# given a list of filenames, load the inverted style code
|
72 |
-
@torch.no_grad()
|
73 |
-
def load_source(files, generator, device='cuda'):
|
74 |
-
sources = []
|
75 |
-
|
76 |
-
for file in files:
|
77 |
-
source = torch.load(f'./inversion_codes/{file}.pt')['latent'].to(device)
|
78 |
-
|
79 |
-
if source.size(0) != 1:
|
80 |
-
source = source.unsqueeze(0)
|
81 |
-
|
82 |
-
if source.ndim == 3:
|
83 |
-
source = generator.get_latent(source, truncation=1, is_latent=True)
|
84 |
-
source = list2style(source)
|
85 |
-
|
86 |
-
sources.append(source)
|
87 |
-
|
88 |
-
sources = torch.cat(sources, 0)
|
89 |
-
if type(sources) is not list:
|
90 |
-
sources = style2list(sources)
|
91 |
-
|
92 |
-
return sources
|
93 |
-
|
94 |
-
def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
|
95 |
-
# image is [3,h,w] or [1,3,h,w] tensor [0,1]
|
96 |
-
if not isinstance(image, torch.Tensor):
|
97 |
-
image = transforms.ToTensor()(image).unsqueeze(0)
|
98 |
-
if image.is_cuda:
|
99 |
-
image = image.cpu()
|
100 |
-
if size is not None and image.size(-1) != size:
|
101 |
-
image = F.interpolate(image, size=(size,size), mode=mode)
|
102 |
-
if image.dim() == 4:
|
103 |
-
image = image[0]
|
104 |
-
image = image.permute(1, 2, 0).detach().numpy()
|
105 |
-
plt.figure()
|
106 |
-
plt.title(title)
|
107 |
-
plt.axis('off')
|
108 |
-
plt.imshow(image)
|
109 |
-
|
110 |
-
def get_landmark(filepath, predictor):
|
111 |
-
"""get landmark with dlib
|
112 |
-
:return: np.array shape=(68, 2)
|
113 |
-
"""
|
114 |
-
detector = dlib.get_frontal_face_detector()
|
115 |
-
|
116 |
-
img = dlib.load_rgb_image(filepath)
|
117 |
-
dets = detector(img, 1)
|
118 |
-
assert len(dets) > 0, "Face not detected, try another face image"
|
119 |
-
|
120 |
-
for k, d in enumerate(dets):
|
121 |
-
shape = predictor(img, d)
|
122 |
-
|
123 |
-
t = list(shape.parts())
|
124 |
-
a = []
|
125 |
-
for tt in t:
|
126 |
-
a.append([tt.x, tt.y])
|
127 |
-
lm = np.array(a)
|
128 |
-
return lm
|
129 |
-
|
130 |
-
|
131 |
-
def align_face(filepath, output_size=256, transform_size=1024, enable_padding=True):
|
132 |
-
|
133 |
-
"""
|
134 |
-
:param filepath: str
|
135 |
-
:return: PIL Image
|
136 |
-
"""
|
137 |
-
predictor = dlib.shape_predictor(shape_predictor_path)
|
138 |
-
lm = get_landmark(filepath, predictor)
|
139 |
-
|
140 |
-
lm_chin = lm[0: 17] # left-right
|
141 |
-
lm_eyebrow_left = lm[17: 22] # left-right
|
142 |
-
lm_eyebrow_right = lm[22: 27] # left-right
|
143 |
-
lm_nose = lm[27: 31] # top-down
|
144 |
-
lm_nostrils = lm[31: 36] # top-down
|
145 |
-
lm_eye_left = lm[36: 42] # left-clockwise
|
146 |
-
lm_eye_right = lm[42: 48] # left-clockwise
|
147 |
-
lm_mouth_outer = lm[48: 60] # left-clockwise
|
148 |
-
lm_mouth_inner = lm[60: 68] # left-clockwise
|
149 |
-
|
150 |
-
# Calculate auxiliary vectors.
|
151 |
-
eye_left = np.mean(lm_eye_left, axis=0)
|
152 |
-
eye_right = np.mean(lm_eye_right, axis=0)
|
153 |
-
eye_avg = (eye_left + eye_right) * 0.5
|
154 |
-
eye_to_eye = eye_right - eye_left
|
155 |
-
mouth_left = lm_mouth_outer[0]
|
156 |
-
mouth_right = lm_mouth_outer[6]
|
157 |
-
mouth_avg = (mouth_left + mouth_right) * 0.5
|
158 |
-
eye_to_mouth = mouth_avg - eye_avg
|
159 |
-
|
160 |
-
# Choose oriented crop rectangle.
|
161 |
-
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
162 |
-
x /= np.hypot(*x)
|
163 |
-
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
164 |
-
y = np.flipud(x) * [-1, 1]
|
165 |
-
c = eye_avg + eye_to_mouth * 0.1
|
166 |
-
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
167 |
-
qsize = np.hypot(*x) * 2
|
168 |
-
|
169 |
-
# read image
|
170 |
-
img = Image.open(filepath)
|
171 |
-
|
172 |
-
transform_size = output_size
|
173 |
-
enable_padding = True
|
174 |
-
|
175 |
-
# Shrink.
|
176 |
-
shrink = int(np.floor(qsize / output_size * 0.5))
|
177 |
-
if shrink > 1:
|
178 |
-
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
179 |
-
img = img.resize(rsize, Image.ANTIALIAS)
|
180 |
-
quad /= shrink
|
181 |
-
qsize /= shrink
|
182 |
-
|
183 |
-
# Crop.
|
184 |
-
border = max(int(np.rint(qsize * 0.1)), 3)
|
185 |
-
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
186 |
-
int(np.ceil(max(quad[:, 1]))))
|
187 |
-
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
188 |
-
min(crop[3] + border, img.size[1]))
|
189 |
-
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
190 |
-
img = img.crop(crop)
|
191 |
-
quad -= crop[0:2]
|
192 |
-
|
193 |
-
# Pad.
|
194 |
-
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
195 |
-
int(np.ceil(max(quad[:, 1]))))
|
196 |
-
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
197 |
-
max(pad[3] - img.size[1] + border, 0))
|
198 |
-
if enable_padding and max(pad) > border - 4:
|
199 |
-
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
200 |
-
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
201 |
-
h, w, _ = img.shape
|
202 |
-
y, x, _ = np.ogrid[:h, :w, :1]
|
203 |
-
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
204 |
-
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
205 |
-
blur = qsize * 0.02
|
206 |
-
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
207 |
-
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
208 |
-
img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
209 |
-
quad += pad[:2]
|
210 |
-
|
211 |
-
# Transform.
|
212 |
-
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
|
213 |
-
if output_size < transform_size:
|
214 |
-
img = img.resize((output_size, output_size), Image.ANTIALIAS)
|
215 |
-
|
216 |
-
# Return aligned image.
|
217 |
-
return img
|
218 |
-
|
219 |
-
def strip_path_extension(path):
|
220 |
-
return os.path.splitext(path)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|