|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.ensemble import RandomForestRegressor |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
st.set_page_config( |
|
page_title="Data Analytics Hub", |
|
page_icon="📊", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.main { |
|
padding-top: 2rem; |
|
} |
|
.stButton>button { |
|
width: 100%; |
|
border-radius: 5px; |
|
height: 3em; |
|
background-color: #ff4b4b; |
|
color: white; |
|
border: none; |
|
} |
|
.stButton>button:hover { |
|
background-color: #ff6b6b; |
|
color: white; |
|
} |
|
div[data-testid="stSidebarNav"] { |
|
background-image: linear-gradient(#f0f2f6, #e0e2e6); |
|
padding: 2rem 0; |
|
border-radius: 10px; |
|
} |
|
.css-1d391kg { |
|
padding: 2rem 1rem; |
|
} |
|
.stAlert { |
|
padding: 1rem; |
|
border-radius: 5px; |
|
} |
|
div[data-testid="stMetricValue"] { |
|
background-color: #f0f2f6; |
|
padding: 1rem; |
|
border-radius: 5px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if 'data' not in st.session_state: |
|
|
|
np.random.seed(42) |
|
dates = pd.date_range('2023-01-01', periods=100, freq='D') |
|
st.session_state.data = pd.DataFrame({ |
|
'date': dates, |
|
'sales': np.random.normal(1000, 200, 100), |
|
'visitors': np.random.normal(500, 100, 100), |
|
'conversion_rate': np.random.uniform(0.01, 0.05, 100), |
|
'customer_satisfaction': np.random.normal(4.2, 0.5, 100), |
|
'region': np.random.choice(['North', 'South', 'East', 'West'], 100) |
|
}) |
|
|
|
|
|
with st.sidebar: |
|
st.image("https://via.placeholder.com/150?text=Analytics+Hub", width=150) |
|
st.title("Analytics Hub") |
|
selected_page = st.radio( |
|
"📑 Navigation", |
|
["🏠 Dashboard", "🔍 Data Explorer", "📊 Visualization", "🤖 ML Predictions"], |
|
key="navigation" |
|
) |
|
|
|
|
|
if selected_page == "🏠 Dashboard": |
|
st.title("📊 Data Analytics Dashboard") |
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
with col1: |
|
st.metric( |
|
"Total Records", |
|
f"{len(st.session_state.data):,}", |
|
"Current dataset size" |
|
) |
|
|
|
with col2: |
|
st.metric( |
|
"Avg Sales", |
|
f"${st.session_state.data['sales'].mean():,.2f}", |
|
f"{st.session_state.data['sales'].pct_change().mean()*100:.1f}%" |
|
) |
|
|
|
with col3: |
|
st.metric( |
|
"Avg Visitors", |
|
f"{st.session_state.data['visitors'].mean():,.0f}", |
|
f"{st.session_state.data['visitors'].pct_change().mean()*100:.1f}%" |
|
) |
|
|
|
with col4: |
|
st.metric( |
|
"Satisfaction", |
|
f"{st.session_state.data['customer_satisfaction'].mean():.2f}", |
|
"Average rating" |
|
) |
|
|
|
|
|
st.markdown("### 📁 Upload Your Dataset") |
|
upload_col1, upload_col2 = st.columns([2, 3]) |
|
|
|
with upload_col1: |
|
uploaded_file = st.file_uploader( |
|
"Choose a CSV file", |
|
type="csv", |
|
help="Upload your CSV file to begin analysis" |
|
) |
|
if uploaded_file is not None: |
|
try: |
|
st.session_state.data = pd.read_csv(uploaded_file) |
|
st.success("✅ Data uploaded successfully!") |
|
except Exception as e: |
|
st.error(f"❌ Error uploading file: {e}") |
|
|
|
with upload_col2: |
|
st.markdown("#### Dataset Preview") |
|
st.dataframe( |
|
st.session_state.data.head(3), |
|
use_container_width=True |
|
) |
|
|
|
elif selected_page == "🔍 Data Explorer": |
|
st.title("🔍 Data Explorer") |
|
|
|
|
|
col1, col2 = st.columns([1, 2]) |
|
|
|
with col1: |
|
st.markdown("### 📊 Dataset Overview") |
|
st.info(f""" |
|
- **Rows:** {st.session_state.data.shape[0]:,} |
|
- **Columns:** {st.session_state.data.shape[1]} |
|
- **Memory Usage:** {st.session_state.data.memory_usage().sum() / 1024**2:.2f} MB |
|
""") |
|
|
|
with col2: |
|
st.markdown("### 📈 Quick Stats") |
|
st.dataframe( |
|
st.session_state.data.describe(), |
|
use_container_width=True |
|
) |
|
|
|
|
|
st.markdown("### 🔬 Column Analysis") |
|
|
|
col1, col2, col3 = st.columns([1, 1, 2]) |
|
|
|
with col1: |
|
column = st.selectbox( |
|
"Select column:", |
|
st.session_state.data.columns, |
|
help="Choose a column to analyze" |
|
) |
|
|
|
with col2: |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[column]): |
|
analysis_type = st.selectbox( |
|
"Analysis type:", |
|
["Distribution", "Time Series"] if "date" in column.lower() else ["Distribution"], |
|
help="Choose type of analysis" |
|
) |
|
else: |
|
analysis_type = "Value Counts" |
|
|
|
with col3: |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[column]): |
|
stats_col1, stats_col2 = st.columns(2) |
|
with stats_col1: |
|
st.metric("Mean", f"{st.session_state.data[column].mean():.2f}") |
|
st.metric("Std Dev", f"{st.session_state.data[column].std():.2f}") |
|
with stats_col2: |
|
st.metric("Median", f"{st.session_state.data[column].median():.2f}") |
|
st.metric("IQR", f"{st.session_state.data[column].quantile(0.75) - st.session_state.data[column].quantile(0.25):.2f}") |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[column]): |
|
sns.set_style("whitegrid") |
|
sns.histplot(data=st.session_state.data, x=column, kde=True, ax=ax) |
|
ax.set_title(f"Distribution of {column}", pad=20) |
|
else: |
|
value_counts = st.session_state.data[column].value_counts() |
|
sns.barplot(x=value_counts.index, y=value_counts.values, ax=ax) |
|
ax.set_title(f"Value Counts for {column}", pad=20) |
|
plt.xticks(rotation=45) |
|
|
|
st.pyplot(fig) |
|
|
|
elif selected_page == "📊 Visualization": |
|
st.title("📊 Advanced Visualizations") |
|
|
|
|
|
chart_type = st.selectbox( |
|
"Select visualization type:", |
|
["📊 Bar Chart", "📈 Line Chart", "🔵 Scatter Plot", "🌡️ Heatmap"], |
|
help="Choose the type of visualization you want to create" |
|
) |
|
|
|
if chart_type in ["📊 Bar Chart", "📈 Line Chart"]: |
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
|
|
with col1: |
|
x_column = st.selectbox("X-axis:", st.session_state.data.columns) |
|
|
|
with col2: |
|
y_column = st.selectbox( |
|
"Y-axis:", |
|
[col for col in st.session_state.data.columns |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[col])] |
|
) |
|
|
|
with col3: |
|
color_theme = st.selectbox( |
|
"Color theme:", |
|
["viridis", "magma", "plasma", "inferno"] |
|
) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
sns.set_style("whitegrid") |
|
sns.set_palette(color_theme) |
|
|
|
if not pd.api.types.is_numeric_dtype(st.session_state.data[x_column]): |
|
agg_data = st.session_state.data.groupby(x_column)[y_column].mean().reset_index() |
|
|
|
if "Bar" in chart_type: |
|
sns.barplot(x=x_column, y=y_column, data=agg_data, ax=ax) |
|
else: |
|
sns.lineplot(x=x_column, y=y_column, data=agg_data, ax=ax, marker='o') |
|
else: |
|
if "Bar" in chart_type: |
|
sns.barplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) |
|
else: |
|
sns.lineplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) |
|
|
|
plt.xticks(rotation=45) |
|
ax.set_title(f"{y_column} by {x_column}", pad=20) |
|
st.pyplot(fig) |
|
|
|
elif "Scatter" in chart_type: |
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
|
|
with col1: |
|
x_column = st.selectbox( |
|
"X-axis:", |
|
[col for col in st.session_state.data.columns |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[col])] |
|
) |
|
|
|
with col2: |
|
y_column = st.selectbox( |
|
"Y-axis:", |
|
[col for col in st.session_state.data.columns |
|
if pd.api.types.is_numeric_dtype(st.session_state.data[col]) and col != x_column] |
|
) |
|
|
|
with col3: |
|
hue_column = st.selectbox( |
|
"Color by:", |
|
["None"] + list(st.session_state.data.columns) |
|
) |
|
|
|
fig, ax = plt.subplots(figsize=(12, 6)) |
|
sns.set_style("whitegrid") |
|
|
|
if hue_column != "None": |
|
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, hue=hue_column, ax=ax) |
|
else: |
|
sns.scatterplot(x=x_column, y=y_column, data=st.session_state.data, ax=ax) |
|
|
|
ax.set_title(f"{y_column} vs {x_column}", pad=20) |
|
st.pyplot(fig) |
|
|
|
elif "Heatmap" in chart_type: |
|
st.markdown("### 🌡️ Correlation Heatmap") |
|
|
|
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist() |
|
correlation = st.session_state.data[numeric_cols].corr() |
|
|
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
mask = np.triu(np.ones_like(correlation)) |
|
sns.heatmap( |
|
correlation, |
|
mask=mask, |
|
annot=True, |
|
cmap='coolwarm', |
|
ax=ax, |
|
center=0, |
|
square=True, |
|
fmt='.2f', |
|
linewidths=1 |
|
) |
|
ax.set_title("Correlation Heatmap", pad=20) |
|
st.pyplot(fig) |
|
|
|
elif selected_page == "🤖 ML Predictions": |
|
st.title("🤖 Machine Learning Predictions") |
|
|
|
|
|
st.markdown("### ⚙️ Model Configuration") |
|
|
|
config_col1, config_col2 = st.columns(2) |
|
|
|
with config_col1: |
|
numeric_cols = st.session_state.data.select_dtypes(include=['number']).columns.tolist() |
|
target_column = st.selectbox( |
|
"Target variable:", |
|
numeric_cols, |
|
help="Select the variable you want to predict" |
|
) |
|
|
|
with config_col2: |
|
model_type = st.selectbox( |
|
"Model type:", |
|
["📊 Linear Regression", "🌲 Random Forest"], |
|
help="Choose the type of model to train" |
|
) |
|
|
|
|
|
st.markdown("### 🎯 Feature Selection") |
|
feature_cols = [col for col in numeric_cols if col != target_column] |
|
selected_features = st.multiselect( |
|
"Select features for the model:", |
|
feature_cols, |
|
default=feature_cols, |
|
help="Choose the variables to use as predictors" |
|
) |
|
|
|
|
|
train_col1, train_col2 = st.columns([2, 1]) |
|
|
|
with train_col1: |
|
if st.button("🚀 Train Model", use_container_width=True): |
|
if len(selected_features) > 0: |
|
with st.spinner("Training model..."): |
|
|
|
X = st.session_state.data[selected_features] |
|
y = st.session_state.data[target_column] |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
scaler = StandardScaler() |
|
X_train_scaled = scaler.fit_transform(X_train) |
|
X_test_scaled = scaler.transform(X_test) |
|
|
|
if "Linear" in model_type: |
|
model = LinearRegression() |
|
else: |
|
model = RandomForestRegressor(n_estimators=100, random_state=42) |
|
|
|
model.fit(X_train_scaled, y_train) |
|
|
|
|
|
st.session_state.model = model |
|
st.session_state.scaler = scaler |
|
st.session_state.features = selected_features |
|
|
|
|
|
train_score = model.score(X_train_scaled, y_train) |
|
test_score = model.score(X_test_scaled, y_test) |
|
|
|
st.success("✨ Model trained successfully!") |
|
|
|
|
|
metric_col1, metric_col2 = st.columns(2) |
|
with metric_col1: |
|
st.metric("Training R² Score", f"{train_score:.4f}") |
|
with metric_col2: |
|
st.metric("Testing R² Score", f"{test_score:.4f}") |
|
|
|
|
|
if "Random" in model_type: |
|
st.markdown("### 📊 Feature Importance") |
|
importance = pd.DataFrame({ |
|
'Feature': selected_features, |
|
'Importance': model.feature_importances_ |
|
}).sort_values('Importance', ascending=False) |
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
sns.barplot(x='Importance', y='Feature', data=importance, ax=ax) |
|
ax.set_title("Feature Importance") |
|
st.pyplot(fig) |
|
else: |
|
st.error("⚠️ Please select at least one feature") |
|
|
|
|
|
st.markdown("### 🎯 Make Predictions") |
|
if 'model' in st.session_state: |
|
pred_col1, pred_col2 = st.columns([2, 1]) |
|
|
|
with pred_col1: |
|
st.markdown("#### Input Features") |
|
input_data = {} |
|
|
|
|
|
for feature in st.session_state.features: |
|
min_val = float(st.session_state.data[feature].min()) |
|
max_val = float(st.session_state.data[feature].max()) |
|
mean_val = float(st.session_state.data[feature].mean()) |
|
|
|
input_data[feature] = st.slider( |
|
f"{feature}:", |
|
min_value=min_val, |
|
max_value=max_val, |
|
value=mean_val, |
|
help=f"Range: {min_val:.2f} to {max_val:.2f}" |
|
) |
|
|
|
with pred_col2: |
|
if st.button("🎯 Predict", use_container_width=True): |
|
input_df = pd.DataFrame([input_data]) |
|
input_scaled = st.session_state.scaler.transform(input_df) |
|
prediction = st.session_state.model.predict(input_scaled)[0] |
|
|
|
st.success(f"Predicted {target_column}: {prediction:.2f}") |
|
else: |
|
st.info("ℹ️ Train a model first to make predictions") |