transformer-autocomplete / backend /run_pplm_discrim_train.py
XciD's picture
XciD HF staff
initial commit
8969f81
raw history blame
No virus
20.2 kB
#! /usr/bin/env python3
# coding=utf-8
# This code is licensed under a non-commercial license.
import argparse
import csv
import json
import math
import time
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim
import torch.optim as optim
import torch.utils.data as data
from nltk.tokenize.treebank import TreebankWordDetokenizer
from torchtext import data as torchtext_data
from torchtext import datasets
from tqdm import tqdm, trange
from transformers import GPT2Tokenizer, GPT2LMHeadModel
torch.manual_seed(0)
np.random.seed(0)
EPSILON = 1e-10
device = "cpu"
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had."
max_length_seq = 100
class ClassificationHead(torch.nn.Module):
"""Classification Head for transformer encoders"""
def __init__(self, class_size, embed_size):
super(ClassificationHead, self).__init__()
self.class_size = class_size
self.embed_size = embed_size
# self.mlp1 = torch.nn.Linear(embed_size, embed_size)
# self.mlp2 = (torch.nn.Linear(embed_size, class_size))
self.mlp = torch.nn.Linear(embed_size, class_size)
def forward(self, hidden_state):
# hidden_state = F.relu(self.mlp1(hidden_state))
# hidden_state = self.mlp2(hidden_state)
logits = self.mlp(hidden_state)
return logits
class Discriminator(torch.nn.Module):
"""Transformer encoder followed by a Classification Head"""
def __init__(
self,
class_size,
pretrained_model="gpt2-medium",
cached_mode=False
):
super(Discriminator, self).__init__()
self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model)
self.embed_size = self.encoder.transformer.config.hidden_size
self.classifier_head = ClassificationHead(
class_size=class_size,
embed_size=self.embed_size
)
self.cached_mode = cached_mode
def get_classifier(self):
return self.classifier_head
def train_custom(self):
for param in self.encoder.parameters():
param.requires_grad = False
self.classifier_head.train()
def avg_representation(self, x):
mask = x.ne(0).unsqueeze(2).repeat(
1, 1, self.embed_size
).float().to(device).detach()
hidden, _ = self.encoder.transformer(x)
masked_hidden = hidden * mask
avg_hidden = torch.sum(masked_hidden, dim=1) / (
torch.sum(mask, dim=1).detach() + EPSILON
)
return avg_hidden
def forward(self, x):
if self.cached_mode:
avg_hidden = x.to(device)
else:
avg_hidden = self.avg_representation(x.to(device))
logits = self.classifier_head(avg_hidden)
probs = F.log_softmax(logits, dim=-1)
return probs
class Dataset(data.Dataset):
def __init__(self, X, y):
"""Reads source and target sequences from txt files."""
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, index):
"""Returns one data pair (source and target)."""
data = {}
data["X"] = self.X[index]
data["y"] = self.y[index]
return data
def collate_fn(data):
def pad_sequences(sequences):
lengths = [len(seq) for seq in sequences]
padded_sequences = torch.zeros(
len(sequences),
max(lengths)
).long() # padding value = 0
for i, seq in enumerate(sequences):
end = lengths[i]
padded_sequences[i, :end] = seq[:end]
return padded_sequences, lengths
item_info = {}
for key in data[0].keys():
item_info[key] = [d[key] for d in data]
x_batch, _ = pad_sequences(item_info["X"])
y_batch = torch.tensor(item_info["y"], dtype=torch.long)
return x_batch, y_batch
def cached_collate_fn(data):
item_info = {}
for key in data[0].keys():
item_info[key] = [d[key] for d in data]
x_batch = torch.cat(item_info["X"], 0)
y_batch = torch.tensor(item_info["y"], dtype=torch.long)
return x_batch, y_batch
def train_epoch(data_loader, discriminator, optimizer,
epoch=0, log_interval=10):
samples_so_far = 0
discriminator.train_custom()
for batch_idx, (input_t, target_t) in enumerate(data_loader):
input_t, target_t = input_t.to(device), target_t.to(device)
optimizer.zero_grad()
output_t = discriminator(input_t)
loss = F.nll_loss(output_t, target_t)
loss.backward(retain_graph=True)
optimizer.step()
samples_so_far += len(input_t)
if batch_idx % log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch + 1,
samples_so_far, len(data_loader.dataset),
100 * samples_so_far / len(data_loader.dataset), loss.item()
)
)
def evaluate_performance(data_loader, discriminator):
discriminator.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for input_t, target_t in data_loader:
input_t, target_t = input_t.to(device), target_t.to(device)
output_t = discriminator(input_t)
# sum up batch loss
test_loss += F.nll_loss(output_t, target_t, reduction="sum").item()
# get the index of the max log-probability
pred_t = output_t.argmax(dim=1, keepdim=True)
correct += pred_t.eq(target_t.view_as(pred_t)).sum().item()
test_loss /= len(data_loader.dataset)
print(
"Performance on test set: "
"Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
test_loss, correct, len(data_loader.dataset),
100. * correct / len(data_loader.dataset)
)
)
def predict(input_sentence, model, classes, cached=False):
input_t = model.tokenizer.encode(input_sentence)
input_t = torch.tensor([input_t], dtype=torch.long, device=device)
if cached:
input_t = model.avg_representation(input_t)
log_probs = model(input_t).data.cpu().numpy().flatten().tolist()
print("Input sentence:", input_sentence)
print("Predictions:", ", ".join(
"{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in
zip(classes, log_probs)
))
def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False):
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
collate_fn=collate_fn)
xs = []
ys = []
for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
with torch.no_grad():
x = x.to(device)
avg_rep = discriminator.avg_representation(x).cpu().detach()
avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
xs += avg_rep_list
ys += y.cpu().numpy().tolist()
data_loader = torch.utils.data.DataLoader(
dataset=Dataset(xs, ys),
batch_size=batch_size,
shuffle=shuffle,
collate_fn=cached_collate_fn)
return data_loader
def train_discriminator(
dataset, dataset_fp=None, pretrained_model="gpt2-medium",
epochs=10, batch_size=64, log_interval=10,
save_model=False, cached=False, no_cuda=False):
global device
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
print("Preprocessing {} dataset...".format(dataset))
start = time.time()
if dataset == "SST":
idx2class = ["positive", "negative", "very positive", "very negative",
"neutral"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached
).to(device)
text = torchtext_data.Field()
label = torchtext_data.Field(sequential=False)
train_data, val_data, test_data = datasets.SST.splits(
text,
label,
fine_grained=True,
train_subtrees=True,
)
x = []
y = []
for i in trange(len(train_data), ascii=True):
seq = TreebankWordDetokenizer().detokenize(
vars(train_data[i])["text"]
)
seq = discriminator.tokenizer.encode(seq)
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
x.append(seq)
y.append(class2idx[vars(train_data[i])["label"]])
train_dataset = Dataset(x, y)
test_x = []
test_y = []
for i in trange(len(test_data), ascii=True):
seq = TreebankWordDetokenizer().detokenize(
vars(test_data[i])["text"]
)
seq = discriminator.tokenizer.encode(seq)
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
test_x.append(seq)
test_y.append(class2idx[vars(test_data[i])["label"]])
test_dataset = Dataset(test_x, test_y)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 2,
}
elif dataset == "clickbait":
idx2class = ["non_clickbait", "clickbait"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached
).to(device)
with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
data = []
for i, line in enumerate(f):
try:
data.append(eval(line))
except:
print("Error evaluating line {}: {}".format(
i, line
))
continue
x = []
y = []
with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
for i, line in enumerate(tqdm(f, ascii=True)):
try:
d = eval(line)
seq = discriminator.tokenizer.encode(d["text"])
if len(seq) < max_length_seq:
seq = torch.tensor(
[50256] + seq, device=device, dtype=torch.long
)
else:
print("Line {} is longer than maximum length {}".format(
i, max_length_seq
))
continue
x.append(seq)
y.append(d["label"])
except:
print("Error evaluating / tokenizing"
" line {}, skipping it".format(i))
pass
full_dataset = Dataset(x, y)
train_size = int(0.9 * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(
full_dataset, [train_size, test_size]
)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 1,
}
elif dataset == "toxic":
idx2class = ["non_toxic", "toxic"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached
).to(device)
x = []
y = []
with open("datasets/toxic/toxic_train.txt") as f:
for i, line in enumerate(tqdm(f, ascii=True)):
try:
d = eval(line)
seq = discriminator.tokenizer.encode(d["text"])
if len(seq) < max_length_seq:
seq = torch.tensor(
[50256] + seq, device=device, dtype=torch.long
)
else:
print("Line {} is longer than maximum length {}".format(
i, max_length_seq
))
continue
x.append(seq)
y.append(int(np.sum(d["label"]) > 0))
except:
print("Error evaluating / tokenizing"
" line {}, skipping it".format(i))
pass
full_dataset = Dataset(x, y)
train_size = int(0.9 * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(
full_dataset, [train_size, test_size]
)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 0,
}
else: # if dataset == "generic":
# This assumes the input dataset is a TSV with the following structure:
# class \t text
if dataset_fp is None:
raise ValueError("When generic dataset is selected, "
"dataset_fp needs to be specified aswell.")
classes = set()
with open(dataset_fp) as f:
csv_reader = csv.reader(f, delimiter="\t")
for row in tqdm(csv_reader, ascii=True):
if row:
classes.add(row[0])
idx2class = sorted(classes)
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached
).to(device)
x = []
y = []
with open(dataset_fp) as f:
csv_reader = csv.reader(f, delimiter="\t")
for i, row in enumerate(tqdm(csv_reader, ascii=True)):
if row:
label = row[0]
text = row[1]
try:
seq = discriminator.tokenizer.encode(text)
if (len(seq) < max_length_seq):
seq = torch.tensor(
[50256] + seq,
device=device,
dtype=torch.long
)
else:
print(
"Line {} is longer than maximum length {}".format(
i, max_length_seq
))
continue
x.append(seq)
y.append(class2idx[label])
except:
print("Error tokenizing line {}, skipping it".format(i))
pass
full_dataset = Dataset(x, y)
train_size = int(0.9 * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(
full_dataset,
[train_size, test_size]
)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 0,
}
end = time.time()
print("Preprocessed {} data points".format(
len(train_dataset) + len(test_dataset))
)
print("Data preprocessing took: {:.3f}s".format(end - start))
if cached:
print("Building representation cache...")
start = time.time()
train_loader = get_cached_data_loader(
train_dataset, batch_size, discriminator, shuffle=True
)
test_loader = get_cached_data_loader(
test_dataset, batch_size, discriminator
)
end = time.time()
print("Building representation cache took: {:.3f}s".format(end - start))
else:
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
collate_fn=collate_fn)
if save_model:
with open("{}_classifier_head_meta.json".format(dataset),
"w") as meta_file:
json.dump(discriminator_meta, meta_file)
optimizer = optim.Adam(discriminator.parameters(), lr=0.0001)
for epoch in range(epochs):
start = time.time()
print("\nEpoch", epoch + 1)
train_epoch(
discriminator=discriminator,
data_loader=train_loader,
optimizer=optimizer,
epoch=epoch,
log_interval=log_interval
)
evaluate_performance(
data_loader=test_loader,
discriminator=discriminator
)
end = time.time()
print("Epoch took: {:.3f}s".format(end - start))
print("\nExample prediction")
predict(example_sentence, discriminator, idx2class, cached)
if save_model:
# torch.save(discriminator.state_dict(),
# "{}_discriminator_{}.pt".format(
# args.dataset, epoch + 1
# ))
torch.save(discriminator.get_classifier().state_dict(),
"{}_classifier_head_epoch_{}.pt".format(dataset,
epoch + 1))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train a discriminator on top of GPT-2 representations")
parser.add_argument("--dataset", type=str, default="SST",
choices=("SST", "clickbait", "toxic", "generic"),
help="dataset to train the discriminator on."
"In case of generic, the dataset is expected"
"to be a TSBV file with structure: class \\t text")
parser.add_argument("--dataset_fp", type=str, default="",
help="File path of the dataset to use. "
"Needed only in case of generic datadset")
parser.add_argument("--pretrained_model", type=str, default="gpt2-medium",
help="Pretrained model to use as encoder")
parser.add_argument("--epochs", type=int, default=10, metavar="N",
help="Number of training epochs")
parser.add_argument("--batch_size", type=int, default=64, metavar="N",
help="input batch size for training (default: 64)")
parser.add_argument("--log_interval", type=int, default=10, metavar="N",
help="how many batches to wait before logging training status")
parser.add_argument("--save_model", action="store_true",
help="whether to save the model")
parser.add_argument("--cached", action="store_true",
help="whether to cache the input representations")
parser.add_argument("--no_cuda", action="store_true",
help="use to turn off cuda")
args = parser.parse_args()
train_discriminator(**(vars(args)))