Spaces:
Sleeping
Sleeping
balakrish181
commited on
Commit
•
58ee800
1
Parent(s):
41ea819
first commit
Browse files- mnist_app/__pycache__/model.cpython-39.pyc +0 -0
- mnist_app/app.py +28 -0
- mnist_app/best_model.pth +3 -0
- mnist_app/examples/0_mnist.png +0 -0
- mnist_app/examples/3.png +0 -0
- mnist_app/model.py +55 -0
- mnist_app/requirements.txt +5 -0
mnist_app/__pycache__/model.cpython-39.pyc
ADDED
Binary file (1.68 kB). View file
|
|
mnist_app/app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import load_model
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
model,transforming,classes = load_model()
|
10 |
+
|
11 |
+
def predict(img):
|
12 |
+
img = transforming(img)
|
13 |
+
img = img.unsqueeze(0)
|
14 |
+
|
15 |
+
|
16 |
+
model.eval()
|
17 |
+
with torch.inference_mode():
|
18 |
+
pred_probs = torch.softmax(model(img), dim=1)
|
19 |
+
return {str(i): float(pred_probs[0][i]) for i in range(len(pred_probs[0]))}
|
20 |
+
|
21 |
+
title = 'MNIST Digit Prediction'
|
22 |
+
description = 'Predict handwritten digits (0-9) using a trained model.'
|
23 |
+
inputs = gr.Image(type='pil', label='Upload an image of a digit')
|
24 |
+
outputs = gr.Label(num_top_classes=3, label='Predictions')
|
25 |
+
demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=title, description=description)
|
26 |
+
|
27 |
+
# Launch the interface
|
28 |
+
demo.launch()
|
mnist_app/best_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6f4516312e2020aa20cde939bfa5663d3001cfe79ebd70ef3ab75f495f05298
|
3 |
+
size 24612
|
mnist_app/examples/0_mnist.png
ADDED
mnist_app/examples/3.png
ADDED
mnist_app/model.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
|
7 |
+
class MnistModel(nn.Module):
|
8 |
+
|
9 |
+
classes = ['0 - zero',
|
10 |
+
'1 - one',
|
11 |
+
'2 - two',
|
12 |
+
'3 - three',
|
13 |
+
'4 - four',
|
14 |
+
'5 - five',
|
15 |
+
'6 - six',
|
16 |
+
'7 - seven',
|
17 |
+
'8 - eight',
|
18 |
+
'9 - nine']
|
19 |
+
def __init__(self, *args, **kwargs) -> None:
|
20 |
+
super().__init__(*args, **kwargs)
|
21 |
+
self.conv1 = nn.Conv2d(1, 3, 3)
|
22 |
+
self.conv2 = nn.Conv2d(3, 6, 3)
|
23 |
+
self.maxpool = nn.MaxPool2d(2, 2)
|
24 |
+
self.fc1 = nn.Linear(150, 32)
|
25 |
+
self.fc2 = nn.Linear(32, 10)
|
26 |
+
#self.fc3 = nn.Linear(32, 10)
|
27 |
+
self.dropout = nn.Dropout(0.3)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
l1 = nn.ReLU()(self.conv1(x))
|
31 |
+
l1 = self.maxpool(l1)
|
32 |
+
l2 = nn.ReLU()(self.conv2(l1))
|
33 |
+
l2 = self.maxpool(l2)
|
34 |
+
fc = torch.flatten(l2, 1)
|
35 |
+
fc1 = nn.ReLU()(self.fc1(fc))
|
36 |
+
fc1 = self.dropout(fc1)
|
37 |
+
#fc2 = nn.ReLU()(self.fc2(fc1))
|
38 |
+
out = self.fc2(fc1)
|
39 |
+
return out
|
40 |
+
|
41 |
+
|
42 |
+
def load_model():
|
43 |
+
model = MnistModel()
|
44 |
+
transforming = transforms.Compose([
|
45 |
+
transforms.Resize((28,28)),
|
46 |
+
transforms.ToTensor(),
|
47 |
+
transforms.Grayscale(num_output_channels=1)
|
48 |
+
])
|
49 |
+
|
50 |
+
model.load_state_dict(torch.load('demos/mnist_app/best_model.pth',map_location='cpu'))
|
51 |
+
|
52 |
+
return model,transforming,model.classes
|
53 |
+
|
54 |
+
if __name__=='__main__':
|
55 |
+
pass
|
mnist_app/requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.31.5
|
2 |
+
pathlib==1.0.1
|
3 |
+
torch==2.2.2
|
4 |
+
torchvision==0.17.2
|
5 |
+
|