Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import DistilBertTokenizer
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import requests
|
10 |
+
|
11 |
+
import clip_inferencing as inference
|
12 |
+
|
13 |
+
device="cpu"
|
14 |
+
valid_df = inference.load_df()
|
15 |
+
image_embeddings = inference.load_image_embeddings()
|
16 |
+
model = inference.load_model(model_path="model/best.pt")
|
17 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
18 |
+
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
|
19 |
+
|
20 |
+
n=9
|
21 |
+
image_filenames=valid_df['image'].values
|
22 |
+
|
23 |
+
with gr.Blocks() as demo:
|
24 |
+
|
25 |
+
def inference(query):
|
26 |
+
encoded_query = tokenizer([query])
|
27 |
+
batch = {
|
28 |
+
key: torch.tensor(values).to(device)
|
29 |
+
for key, values in encoded_query.items()
|
30 |
+
}
|
31 |
+
with torch.no_grad():
|
32 |
+
text_features = model.text_encoder(
|
33 |
+
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
|
34 |
+
)
|
35 |
+
text_embeddings = model.text_projection(text_features)
|
36 |
+
|
37 |
+
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
|
38 |
+
dot_similarity = text_embeddings_n @ image_embeddings_n.T
|
39 |
+
|
40 |
+
values, indices = torch.topk(dot_similarity.squeeze(0), n * 5)
|
41 |
+
matches = [image_filenames[idx] for idx in indices[::5]]
|
42 |
+
|
43 |
+
resulting_images = []
|
44 |
+
for match in matches:
|
45 |
+
img_https_link = "https://raw.githubusercontent.com/bala1802/ERA_Session19/main/Images/" + match
|
46 |
+
resulting_images.append(np.array(Image.open(requests.get(img_https_link, stream=True).raw).convert('RGB')))
|
47 |
+
|
48 |
+
# resulting_images.append(np.array(Image.open(f"Images/{match}").convert('RGB')))
|
49 |
+
return resulting_images
|
50 |
+
|
51 |
+
gr.Markdown(
|
52 |
+
"""
|
53 |
+
# CLIP Demo !!!
|
54 |
+
"""
|
55 |
+
)
|
56 |
+
with gr.Column(variant="panel"):
|
57 |
+
with gr.Row():
|
58 |
+
text = gr.Textbox(
|
59 |
+
label="Enter your prompt",
|
60 |
+
max_lines=1,
|
61 |
+
placeholder="Extract the matching images ....",
|
62 |
+
container=False,
|
63 |
+
)
|
64 |
+
btn = gr.Button("Show Images", scale=0)
|
65 |
+
|
66 |
+
gallery = gr.Gallery(
|
67 |
+
label="Movies", show_label=False, elem_id="gallery"
|
68 |
+
, columns=[4], rows=[1], object_fit="contain", height="auto")
|
69 |
+
|
70 |
+
btn.click(inference, text, gallery)
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
demo.launch()
|