FRIENDS-GPT / head.py
bala1802's picture
Upload 7 files
dabde41
raw
history blame
1.3 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
import gpt_config as config
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(config.n_embd, head_size, bias=False)
self.query = nn.Linear(config.n_embd, head_size, bias=False)
self.value = nn.Linear(config.n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(config.block_size, config.block_size)))
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B,T,C = x.shape
k = self.key(x) # (B,T,hs)
q = self.query(x) # (B,T,hs)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,hs)
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
return out