Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| from huggingface_hub import hf_hub_download | |
| import joblib | |
| # Download and load the model | |
| model_path = hf_hub_download(repo_id="bala-ai/machine_failure_model", filename="best_machine_failure_model_v1.joblib") | |
| model = joblib.load(model_path) | |
| # Streamlit UI for Machine Failure Prediction | |
| st.title("Machine Failure Prediction App") | |
| st.write(""" | |
| This application predicts the likelihood of a machine failing based on its operational parameters. | |
| Please enter the sensor and configuration data below to get a prediction. | |
| """) | |
| # User input | |
| Type = st.selectbox("Machine Type", ["H", "L", "M"]) | |
| air_temp = st.number_input("Air Temperature (K)", min_value=250.0, max_value=400.0, value=298.0, step=0.1) | |
| process_temp = st.number_input("Process Temperature (K)", min_value=250.0, max_value=500.0, value=324.0, step=0.1) | |
| rot_speed = st.number_input("Rotational Speed (RPM)", min_value=0, max_value=3000, value=1400) | |
| torque = st.number_input("Torque (Nm)", min_value=0.0, max_value=100.0, value=40.0, step=0.1) | |
| tool_wear = st.number_input("Tool Wear (min)", min_value=0, max_value=300, value=10) | |
| # Assemble input into DataFrame | |
| input_data = pd.DataFrame([{ | |
| 'Air temperature': air_temp, | |
| 'Process temperature': process_temp, | |
| 'Rotational speed': rot_speed, | |
| 'Torque': torque, | |
| 'Tool wear': tool_wear, | |
| 'Type': Type | |
| }]) | |
| if st.button("Predict Failure"): | |
| prediction = model.predict(input_data)[0] | |
| result = "Machine Failure" if prediction == 1 else "No Failure" | |
| st.subheader("Prediction Result:") | |
| st.success(f"The model predicts: **{result}**") | |