Genshin_S-Z / Inference /src /load_infer_info.py
白菜工厂1145号员工
Automated commit from batch script
a15256b
raw
history blame
12.9 kB
global character_name
import os, json, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append(os.path.join(now_dir, "GPT_SoVITS"))
from inference_core import inference, tts_pipline, get_streaming_tts_wav
def load_infer_config(character_path):
config_path = os.path.join(character_path, "infer_config.json")
"""加载环境配置文件"""
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
if config.get("ref_wav_path") is not None:
return update_config_version(character_path)
return config
import os
import json
# 取得模型文件夹路径
global models_path
models_path = "trained"
config_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "config.json")
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
models_path = config.get("models_path", "trained")
def remove_character_path(full_path,character_path):
# 从full_path中移除character_path部分
relative_path = full_path.replace(character_path, '')
# 如果relative_path以路径分隔符开头,去除它
if relative_path.startswith(os.path.sep):
relative_path = relative_path[len(os.path.sep):]
return relative_path
def update_config_version(character_path):
config_path = os.path.join(character_path, "infer_config.json")
try:
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
print("正在更新文件")
if config.get("ref_wav_path") is not None:
config["emotion_list"] = {
"default": {
"ref_wav_path": remove_character_path(config["ref_wav_path"],character_path),
"prompt_text": config["prompt_text"],
"prompt_language": config["prompt_language"]
}
}
config.pop("ref_wav_path", None)
config.pop("prompt_text", None)
config.pop("prompt_language", None)
config["sovits_path"] = remove_character_path(config["sovits_path"],character_path)
config["gpt_path"] = remove_character_path(config["gpt_path"],character_path)
with open(config_path, 'w', encoding='utf-8') as f:
json.dump(config, f, ensure_ascii=False, indent=4)
return config
except:
raise Exception("更新失败!请手动删除infer_config.json文件,让系统自动生成")
def auto_generate_infer_config(character_path):
## TODO: Auto-generate wav-list and prompt-list from character_path
##
# Initialize variables for file detection
print(f"正在自动生成配置文件: {character_path}")
ckpt_file_found = None
pth_file_found = None
wav_file_found = None
# Iterate through files in character_path to find matching file types
for dirpath, dirnames, filenames in os.walk(character_path):
for file in filenames:
# 构建文件的完整路径
full_path = os.path.join(dirpath, file)
# 从full_path中移除character_path部分
relative_path = remove_character_path(full_path,character_path)
# 根据文件扩展名和变量是否已赋值来更新变量
if file.lower().endswith(".ckpt") and ckpt_file_found is None:
ckpt_file_found = relative_path
elif file.lower().endswith(".pth") and pth_file_found is None:
pth_file_found = relative_path
elif file.lower().endswith(".wav") and wav_file_found is None:
wav_file_found = relative_path
elif file.lower().endswith(".mp3"):
import pydub
# Convert mp3 to wav
wav_file_path = os.path.join(dirpath,os.path.splitext(file)[0] + ".wav")
pydub.AudioSegment.from_mp3(full_path).export(wav_file_path, format="wav")
if wav_file_found is None:
wav_file_found = remove_character_path(os.path.join(dirpath,os.path.splitext(file)[0] + ".wav"),character_path)
# Initialize infer_config with gpt_path and sovits_path regardless of wav_file_found
infer_config = {
"gpt_path": ckpt_file_found,
"sovits_path": pth_file_found,
"software_version": "1.1",
r"简介": r"这是一个配置文件适用于https://github.com/X-T-E-R/TTS-for-GPT-soVITS,是一个简单好用的前后端项目"
}
# If wav file is also found, update infer_config to include ref_wav_path, prompt_text, and prompt_language
if wav_file_found:
wav_file_name = os.path.splitext(os.path.basename(wav_file_found))[0] # Extract the filename without extension
infer_config["emotion_list"] = {
"default": {
"ref_wav_path": wav_file_found,
"prompt_text": wav_file_name,
"prompt_language": "多语种混合"
}
}
else:
raise Exception("找不到wav参考文件!请把有效wav文件放置在模型文件夹下。否则效果可能会非常怪")
pass
# Check if the essential model files were found
if ckpt_file_found and pth_file_found:
infer_config_path = os.path.join(character_path, "infer_config.json")
try:
with open(infer_config_path , 'w', encoding='utf-8') as f:
json.dump(infer_config, f, ensure_ascii=False, indent=4)
except IOError as e:
print(f"无法写入文件: {infer_config_path}. 错误: {e}")
return infer_config_path
else:
return "Required model files (.ckpt or .pth) not found in character_path directory."
def load_character(cha_name):
global character_name
character_path=os.path.join(models_path,cha_name)
try:
# 加载配置
config = load_infer_config(character_path)
# 尝试从环境变量获取gpt_path,如果未设置,则从配置文件读取
gpt_path = os.path.join(character_path,config.get("gpt_path"))
# 尝试从环境变量获取sovits_path,如果未设置,则从配置文件读取
sovits_path = os.path.join(character_path,config.get("sovits_path"))
except:
try:
# 尝试调用auto_get_infer_config
auto_generate_infer_config(character_path)
load_character(cha_name)
return
except:
# 报错
raise Exception("找不到模型文件!请把有效模型放置在模型文件夹下,确保其中至少有pth、ckpt和wav三种文件。")
# 修改权重
character_name = cha_name
tts_pipline.init_t2s_weights(gpt_path)
tts_pipline.init_vits_weights(sovits_path)
print(f"加载角色成功: {cha_name}")
def get_deflaut_character_name():
import os
import json
character_info_path = os.path.join(models_path, "character_info.json")
default_character = None
if os.path.exists(character_info_path):
with open(character_info_path, "r", encoding='utf-8') as f:
try:
character_info = json.load(f)
default_character = character_info.get("deflaut_character")
except:
pass
if default_character in ["", None, "default"]:
default_character=None
if default_character is None or not os.path.exists(os.path.join(models_path, default_character)):
# List all items in models_path
all_items = os.listdir(models_path)
# Filter out only directories (folders) from all_items
trained_folders = [item for item in all_items if os.path.isdir(os.path.join(models_path, item))]
# If there are any directories found, set the first one as the default character
if trained_folders:
default_character = trained_folders[0]
return default_character
character_name = get_deflaut_character_name()
load_character(character_name)
def match_character_emotion(character_path):
if not os.path.exists(os.path.join(character_path, "reference_audio")):
# 如果没有reference_audio文件夹,就返回None
return None, None, None
def get_wav_from_text_api(
text,
text_language,
batch_size=1,
speed_factor=1.0,
top_k=12,
top_p=0.6,
temperature=0.6,
character_emotion="default",
cut_method="auto_cut",
seed=-1,
stream=False,
):
text = text.replace("\r", "\n").replace("<br>", "\n").replace("\t", " ")
# 加载环境配置
config = load_infer_config(os.path.join(models_path, character_name))
# 尝试从配置中提取参数,如果找不到则设置为None
ref_wav_path = None
prompt_text = None
prompt_language = None
if character_emotion == "auto":
# 如果是auto模式,那么就自动决定情感
ref_wav_path, prompt_text, prompt_language = match_character_emotion(os.path.join(models_path, character_name))
if ref_wav_path is None:
# 未能通过auto匹配到情感,就尝试使用指定的情绪列表
emotion_list=config.get('emotion_list', None)# 这是新版的infer_config文件,如果出现错误请删除infer_config.json文件,让系统自动生成
now_emotion="default"
for emotion, details in emotion_list.items():
print(emotion)
if emotion==character_emotion:
now_emotion=character_emotion
break
for emotion, details in emotion_list.items():
if emotion==now_emotion:
ref_wav_path = os.path.join(os.path.join(models_path,character_name), details['ref_wav_path'])
prompt_text = details['prompt_text']
prompt_language = details['prompt_language']
break
if ref_wav_path is None:
print("找不到ref_wav_path!请删除infer_config.json文件,让系统自动生成")
print(prompt_text)
# 根据是否找到ref_wav_path和prompt_text、prompt_language来决定ref_free的值
if ref_wav_path is not None and prompt_text is not None and prompt_language is not None:
ref_free = False
else:
ref_free = True
top_k = 3
top_p = 0.3
temperature = 0.3
params = {
"text": text,
"text_lang": text_language,
"ref_audio_path": ref_wav_path,
"prompt_text": prompt_text,
"prompt_lang": prompt_language,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"text_split_method": cut_method,
"batch_size": batch_size,
"speed_factor": speed_factor,
"ref_text_free": ref_free,
"split_bucket":True,
"return_fragment":stream,
"seed": seed,
}
# 调用原始的get_tts_wav函数
# 注意:这里假设get_tts_wav函数及其所需的其它依赖已经定义并可用
if stream == False:
return inference(**params)
else:
return get_streaming_tts_wav(params)
def update_character_info():
try:
with open(os.path.join(models_path, "character_info.json"), "r", encoding='utf-8') as f:
default_character = json.load(f).get("deflaut_character", None)
except:
default_character = ""
characters_and_emotions = {}
for character_subdir in [f for f in os.listdir(models_path) if os.path.isdir(os.path.join(models_path, f))]:
if os.path.exists(os.path.join(models_path, character_subdir, "infer_config.json")):
try:
with open(os.path.join(models_path, character_subdir, "infer_config.json"), "r", encoding='utf-8') as f:
config = json.load(f)
emotion_list=[emotion for emotion in config.get('emotion_list', None)]
if emotion_list is not None:
characters_and_emotions[character_subdir] = emotion_list
else:
characters_and_emotions[character_subdir] = ["default"]
except:
characters_and_emotions[character_subdir] = ["default"]
else:
characters_and_emotions[character_subdir] = ["default"]
with open(os.path.join(models_path, "character_info.json"), "w", encoding='utf-8') as f:
json.dump({"deflaut_character": default_character, "characters_and_emotions": characters_and_emotions}, f, ensure_ascii=False, indent=4)
return {"deflaut_character": default_character, "characters_and_emotions": characters_and_emotions}
# def test_audio_save():
# fs, audio_to_save=get_wav_from_text_api("""这是一段音频测试""",'多语种混合')
# file_path = "example_audio.wav"
# from scipy.io.wavfile import write
# write(file_path, fs, audio_to_save)
# test_audio_save()
update_character_info()