Spaces:
Build error
Build error
import torch | |
from modules.commons.common_layers import * | |
from modules.commons.common_layers import Embedding | |
from modules.commons.common_layers import SinusoidalPositionalEmbedding | |
from utils.hparams import hparams | |
from utils.pitch_utils import f0_to_coarse, denorm_f0 | |
class LayerNorm(torch.nn.LayerNorm): | |
"""Layer normalization module. | |
:param int nout: output dim size | |
:param int dim: dimension to be normalized | |
""" | |
def __init__(self, nout, dim=-1): | |
"""Construct an LayerNorm object.""" | |
super(LayerNorm, self).__init__(nout, eps=1e-12) | |
self.dim = dim | |
def forward(self, x): | |
"""Apply layer normalization. | |
:param torch.Tensor x: input tensor | |
:return: layer normalized tensor | |
:rtype torch.Tensor | |
""" | |
if self.dim == -1: | |
return super(LayerNorm, self).forward(x) | |
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) | |
class PitchPredictor(torch.nn.Module): | |
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5, | |
dropout_rate=0.1, padding='SAME'): | |
"""Initilize pitch predictor module. | |
Args: | |
idim (int): Input dimension. | |
n_layers (int, optional): Number of convolutional layers. | |
n_chans (int, optional): Number of channels of convolutional layers. | |
kernel_size (int, optional): Kernel size of convolutional layers. | |
dropout_rate (float, optional): Dropout rate. | |
""" | |
super(PitchPredictor, self).__init__() | |
self.conv = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
self.padding = padding | |
for idx in range(n_layers): | |
in_chans = idim if idx == 0 else n_chans | |
self.conv += [torch.nn.Sequential( | |
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2) | |
if padding == 'SAME' | |
else (kernel_size - 1, 0), 0), | |
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0), | |
torch.nn.ReLU(), | |
LayerNorm(n_chans, dim=1), | |
torch.nn.Dropout(dropout_rate) | |
)] | |
self.linear = torch.nn.Linear(n_chans, odim) | |
self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096) | |
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) | |
def forward(self, xs): | |
""" | |
:param xs: [B, T, H] | |
:return: [B, T, H] | |
""" | |
positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0]) | |
xs = xs + positions | |
xs = xs.transpose(1, -1) # (B, idim, Tmax) | |
for f in self.conv: | |
xs = f(xs) # (B, C, Tmax) | |
# NOTE: calculate in log domain | |
xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H) | |
return xs | |
class SvcEncoder(nn.Module): | |
def __init__(self, dictionary, out_dims=None): | |
super().__init__() | |
# self.dictionary = dictionary | |
self.padding_idx = 0 | |
self.hidden_size = hparams['hidden_size'] | |
self.out_dims = out_dims | |
if out_dims is None: | |
self.out_dims = hparams['audio_num_mel_bins'] | |
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True) | |
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size | |
if hparams['use_pitch_embed']: | |
self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx) | |
self.pitch_predictor = PitchPredictor( | |
self.hidden_size, | |
n_chans=predictor_hidden, | |
n_layers=hparams['predictor_layers'], | |
dropout_rate=hparams['predictor_dropout'], | |
odim=2 if hparams['pitch_type'] == 'frame' else 1, | |
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel']) | |
if hparams['use_energy_embed']: | |
self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx) | |
if hparams['use_spk_id']: | |
self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size) | |
if hparams['use_split_spk_id']: | |
self.spk_embed_f0 = Embedding(hparams['num_spk'], self.hidden_size) | |
self.spk_embed_dur = Embedding(hparams['num_spk'], self.hidden_size) | |
elif hparams['use_spk_embed']: | |
self.spk_embed_proj = Linear(256, self.hidden_size, bias=True) | |
def forward(self, hubert, mel2ph=None, spk_embed=None, | |
ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=True, | |
spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs): | |
ret = {} | |
encoder_out = hubert | |
src_nonpadding = (hubert != 0).any(-1)[:, :, None] | |
# add ref style embed | |
# Not implemented | |
# variance encoder | |
var_embed = 0 | |
# encoder_out_dur denotes encoder outputs for duration predictor | |
# in speech adaptation, duration predictor use old speaker embedding | |
if hparams['use_spk_embed']: | |
spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :] | |
elif hparams['use_spk_id']: | |
spk_embed_id = spk_embed | |
if spk_embed_dur_id is None: | |
spk_embed_dur_id = spk_embed_id | |
if spk_embed_f0_id is None: | |
spk_embed_f0_id = spk_embed_id | |
spk_embed_0 = self.spk_embed_proj(spk_embed_id.to(hubert.device))[:, None, :] | |
spk_embed_1 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :] | |
spk_embed_2 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :] | |
spk_embed = 1 * spk_embed_0 + 0 * spk_embed_1 + 0 * spk_embed_2 | |
spk_embed_dur = spk_embed_f0 = spk_embed | |
if hparams['use_split_spk_id']: | |
spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :] | |
spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :] | |
else: | |
spk_embed_dur = spk_embed_f0 = spk_embed = 0 | |
ret['mel2ph'] = mel2ph | |
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0]) | |
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]]) | |
decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H] | |
tgt_nonpadding = (mel2ph > 0).float()[:, :, None] | |
# add pitch and energy embed | |
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding | |
if hparams['use_pitch_embed']: | |
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding | |
decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph) | |
if hparams['use_energy_embed']: | |
decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret) | |
ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding | |
return ret | |
def add_dur(self, dur_input, mel2ph, hubert, ret): | |
src_padding = (hubert == 0).all(-1) | |
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach()) | |
if mel2ph is None: | |
dur, xs = self.dur_predictor.inference(dur_input, src_padding) | |
ret['dur'] = xs | |
ret['dur_choice'] = dur | |
mel2ph = self.length_regulator(dur, src_padding).detach() | |
else: | |
ret['dur'] = self.dur_predictor(dur_input, src_padding) | |
ret['mel2ph'] = mel2ph | |
return mel2ph | |
def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs): | |
x = decoder_inp # [B, T, H] | |
x = self.mel_out(x) | |
return x * tgt_nonpadding | |
def out2mel(self, out): | |
return out | |
def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None): | |
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) | |
pitch_padding = (mel2ph == 0) | |
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding) | |
if pitch_padding is not None: | |
f0[pitch_padding] = 0 | |
pitch = f0_to_coarse(f0_denorm, hparams) # start from 0 | |
ret['pitch_pred'] = pitch.unsqueeze(-1) | |
pitch_embedding = self.pitch_embed(pitch) | |
return pitch_embedding | |
def add_energy(self, decoder_inp, energy, ret): | |
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) | |
ret['energy_pred'] = energy # energy_pred = self.energy_predictor(decoder_inp)[:, :, 0] | |
energy = torch.clamp(energy * 256 // 4, max=255).long() # energy_to_coarse | |
energy_embedding = self.energy_embed(energy) | |
return energy_embedding | |
def mel_norm(x): | |
return (x + 5.5) / (6.3 / 2) - 1 | |
def mel_denorm(x): | |
return (x + 1) * (6.3 / 2) - 5.5 | |