Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import csv
|
5 |
+
|
6 |
+
# Load a pre-trained model
|
7 |
+
model = transformers.AutoModel.from_pretrained("bert-base-uncased")
|
8 |
+
model.eval()
|
9 |
+
|
10 |
+
# Define a function to run the model on input text
|
11 |
+
def predict_sentiment(input_text):
|
12 |
+
input_ids = transformers.BertTokenizer.encode(input_text, add_special_tokens=True)
|
13 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
14 |
+
outputs = model(input_ids)
|
15 |
+
logits = outputs[0]
|
16 |
+
sentiment = "Positive" if logits[0][0] > 0 else "Negative"
|
17 |
+
return sentiment
|
18 |
+
|
19 |
+
# Create a chat history to store previous inputs and outputs
|
20 |
+
chat_history = []
|
21 |
+
|
22 |
+
# Define a function to update the chat history
|
23 |
+
def update_history(input_text, sentiment):
|
24 |
+
chat_history.append(f"User: {input_text}")
|
25 |
+
chat_history.append(f"Model: {sentiment}")
|
26 |
+
|
27 |
+
# Read the prompts from a CSV file
|
28 |
+
prompts = []
|
29 |
+
with open("prompts.csv") as csvfile:
|
30 |
+
reader = csv.reader(csvfile)
|
31 |
+
for row in reader:
|
32 |
+
prompts.append(row[0])
|
33 |
+
|
34 |
+
# Create an input interface using Gradio
|
35 |
+
inputs = gr.inputs.Dropdown(prompts, default=prompts[0])
|
36 |
+
|
37 |
+
# Create an output interface using Gradio
|
38 |
+
outputs = gr.outputs.Chatbox(label="Sentiment", lines=1)
|
39 |
+
|
40 |
+
# Run the interface
|
41 |
+
interface = gr.Interface(predict_sentiment, inputs, outputs, title="Sentiment Analysis",
|
42 |
+
on_output=update_history)
|
43 |
+
interface.launch()
|