Update app.py
Browse files
app.py
CHANGED
|
@@ -1,77 +1,106 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
import numpy as np
|
| 4 |
import os
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
import spaces
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
login(token=HF_TOKEN)
|
| 12 |
-
|
| 13 |
-
MODEL_ID = "badrex/w2v-bert-2.0-zulu-asr"
|
| 14 |
-
transcriber = pipeline("automatic-speech-recognition", model=MODEL_ID)
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
@spaces.GPU
|
| 18 |
-
def transcribe(audio):
|
| 19 |
-
sr, y = audio
|
| 20 |
-
|
| 21 |
-
# convert to mono if stereo
|
| 22 |
-
if y.ndim > 1:
|
| 23 |
-
y = y.mean(axis=1)
|
| 24 |
-
|
| 25 |
-
# resample to 16kHz if needed
|
| 26 |
-
if sr != 16000:
|
| 27 |
-
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
|
| 28 |
-
|
| 29 |
-
y = y.astype(np.float32)
|
| 30 |
-
y /= np.max(np.abs(y))
|
| 31 |
-
|
| 32 |
-
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
| 33 |
|
|
|
|
| 34 |
examples = []
|
| 35 |
examples_dir = "examples"
|
| 36 |
if os.path.exists(examples_dir):
|
| 37 |
for filename in os.listdir(examples_dir):
|
| 38 |
if filename.endswith((".wav", ".mp3", ".ogg")):
|
| 39 |
examples.append([os.path.join(examples_dir, filename)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
</p>
|
| 57 |
-
<br>
|
| 58 |
-
<p style="font-size: 15px; line-height: 1.8;">
|
| 59 |
-
Hi there ππΌ
|
| 60 |
-
<br>
|
| 61 |
-
<br>
|
| 62 |
-
This is a demo for <a href="https://huggingface.co/badrex/w2v-bert-2.0-zulu-asr" style="color: #2563eb;">badrex/w2v-bert-2.0-zulu-asr</a>, a robust Transformer-based automatic speech recognition (ASR) system for the Zulu language, a Bantu language spoken in South Africa.
|
| 63 |
-
The underlying ASR model was trained on 250 hours of high-quality human-transcribed speech based on the <a href="https://huggingface.co/datasets/dsfsi-anv/za-african-next-voices" style="color: #2563eb;">Swivuriso: ZA-African Next Voices</a> dataset.
|
| 64 |
-
<br>
|
| 65 |
-
<p style="font-size: 15px; line-height: 1.8;">
|
| 66 |
-
Simply <strong>upload an audio file</strong> π€ or <strong>record yourself speaking</strong> ποΈβΊοΈ to try out the model!
|
| 67 |
-
</p>
|
| 68 |
-
</div>
|
| 69 |
-
</div>
|
| 70 |
-
""",
|
| 71 |
-
examples=examples if examples else None,
|
| 72 |
-
cache_examples=False,
|
| 73 |
-
flagging_mode=None,
|
| 74 |
-
)
|
| 75 |
|
|
|
|
| 76 |
if __name__ == "__main__":
|
| 77 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import torchaudio
|
| 3 |
+
import gradio as gr
|
| 4 |
import spaces
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
| 7 |
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
print(f"Using device: {device}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# load examples
|
| 12 |
examples = []
|
| 13 |
examples_dir = "examples"
|
| 14 |
if os.path.exists(examples_dir):
|
| 15 |
for filename in os.listdir(examples_dir):
|
| 16 |
if filename.endswith((".wav", ".mp3", ".ogg")):
|
| 17 |
examples.append([os.path.join(examples_dir, filename)])
|
| 18 |
+
|
| 19 |
+
# Load model and processor
|
| 20 |
+
MODEL_PATH = "badrex/w2v-bert-2.0-zulu-asr"
|
| 21 |
+
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 22 |
+
model = AutoModelForCTC.from_pretrained(MODEL_PATH)
|
| 23 |
+
|
| 24 |
+
# move model and processor to device
|
| 25 |
+
model = model.to(device)
|
| 26 |
+
#processor = processor.to(device)
|
| 27 |
+
|
| 28 |
+
@spaces.GPU()
|
| 29 |
+
def process_audio(audio_path):
|
| 30 |
+
"""Process audio with return the generated respotextnse.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
audio_path: Path to the audio file to be transcribed.
|
| 34 |
+
Returns:
|
| 35 |
+
String containing the transcribed text from the audio file, or an error message
|
| 36 |
+
if the audio file is missing.
|
| 37 |
+
"""
|
| 38 |
+
if not audio_path:
|
| 39 |
+
return "Please upload an audio file."
|
| 40 |
+
|
| 41 |
+
# get audio array
|
| 42 |
+
audio_array, sample_rate = torchaudio.load(audio_path)
|
| 43 |
+
|
| 44 |
+
# if sample rate is not 16000, resample to 16000
|
| 45 |
+
if sample_rate != 16000:
|
| 46 |
+
audio_array = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio_array)
|
| 47 |
+
|
| 48 |
+
#audio_array = audio_array.to(device)
|
| 49 |
+
|
| 50 |
+
inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt")
|
| 51 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 52 |
+
|
| 53 |
+
#inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 54 |
+
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
logits = model(**inputs).logits
|
| 57 |
+
|
| 58 |
+
outputs = torch.argmax(logits, dim=-1)
|
| 59 |
|
| 60 |
+
decoded_outputs = processor.batch_decode(
|
| 61 |
+
outputs,
|
| 62 |
+
skip_special_tokens=True
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
return decoded_outputs[0].strip()
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# Define Gradio interface
|
| 69 |
+
with gr.Blocks(title="Voxtral Demo") as demo:
|
| 70 |
+
gr.Markdown("# isiZulu ASR ποΈ Robust Speech Recognition for Zulu Language πβπ©")
|
| 71 |
+
gr.Markdown(
|
| 72 |
+
'Developed with <span style="color:red;">β€</span> by <a href="https://badrex.github.io/">Badr al-Absi</a>'
|
| 73 |
+
)
|
| 74 |
+
gr.Markdown(
|
| 75 |
+
"""### Hi there ππΌ
|
| 76 |
|
| 77 |
+
This is a demo for [badrex/w2v-bert-2.0-zulu-asr](https://huggingface.co/badrex/w2v-bert-2.0-zulu-asr),
|
| 78 |
+
a robust Transformer-based automatic speech recognition (ASR) system for the Zulu language that was trained on 250+ hours of
|
| 79 |
+
high-quality human-transcribed speech based on the [ZA-African Next Voices](https://huggingface.co/datasets/dsfsi-anv/za-african-next-voices) dataset.
|
| 80 |
+
"""
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
gr.Markdown("Simply **upload an audio file** π€ or **record yourself speaking** ποΈβΊοΈ to try out the model!")
|
| 84 |
+
|
| 85 |
+
with gr.Row():
|
| 86 |
+
with gr.Column():
|
| 87 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
| 88 |
+
submit_btn = gr.Button("Transcribe Audio", variant="primary")
|
| 89 |
+
|
| 90 |
+
with gr.Column():
|
| 91 |
+
output_text = gr.Textbox(label="Text Transcription", lines=10)
|
| 92 |
|
| 93 |
+
submit_btn.click(
|
| 94 |
+
fn=process_audio,
|
| 95 |
+
inputs=[audio_input],
|
| 96 |
+
outputs=output_text
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
gr.Examples(
|
| 100 |
+
examples=examples if examples else None,
|
| 101 |
+
inputs=[audio_input],
|
| 102 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# Launch the app
|
| 105 |
if __name__ == "__main__":
|
| 106 |
+
demo.queue().launch() #share=False, ssr_mode=False, mcp_server=True
|