Spaces:
Paused
Paused
import os | |
import cv2 | |
import time | |
import glob | |
import argparse | |
import scipy | |
import numpy as np | |
from PIL import Image | |
import torch | |
from tqdm import tqdm | |
from itertools import cycle | |
from src.face3d.extract_kp_videos_safe import KeypointExtractor | |
from facexlib.alignment import landmark_98_to_68 | |
import numpy as np | |
from PIL import Image | |
class Preprocesser: | |
def __init__(self, device='cuda'): | |
self.predictor = KeypointExtractor(device) | |
def get_landmark(self, img_np): | |
"""get landmark with dlib | |
:return: np.array shape=(68, 2) | |
""" | |
with torch.no_grad(): | |
dets = self.predictor.det_net.detect_faces(img_np, 0.97) | |
if len(dets) == 0: | |
return None | |
det = dets[0] | |
img = img_np[int(det[1]):int(det[3]), int(det[0]):int(det[2]), :] | |
lm = landmark_98_to_68(self.predictor.detector.get_landmarks(img)) # [0] | |
#### keypoints to the original location | |
lm[:,0] += int(det[0]) | |
lm[:,1] += int(det[1]) | |
return lm | |
def align_face(self, img, lm, output_size=1024): | |
""" | |
:param filepath: str | |
:return: PIL Image | |
""" | |
lm_chin = lm[0: 17] # left-right | |
lm_eyebrow_left = lm[17: 22] # left-right | |
lm_eyebrow_right = lm[22: 27] # left-right | |
lm_nose = lm[27: 31] # top-down | |
lm_nostrils = lm[31: 36] # top-down | |
lm_eye_left = lm[36: 42] # left-clockwise | |
lm_eye_right = lm[42: 48] # left-clockwise | |
lm_mouth_outer = lm[48: 60] # left-clockwise | |
lm_mouth_inner = lm[60: 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference | |
x /= np.hypot(*x) # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化 | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) # 双眼差和眼嘴差,选较大的作为基准尺度 | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点 | |
qsize = np.hypot(*x) * 2 # 定义四边形的大小(边长),为基准尺度的2倍 | |
# Shrink. | |
# 如果计算出的四边形太大了,就按比例缩小它 | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
else: | |
rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1])))) | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), | |
min(crop[3] + border, img.size[1])) | |
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
# img = img.crop(crop) | |
quad -= crop[0:2] | |
# Pad. | |
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), | |
max(pad[3] - img.size[1] + border, 0)) | |
# if enable_padding and max(pad) > border - 4: | |
# pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
# img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
# h, w, _ = img.shape | |
# y, x, _ = np.ogrid[:h, :w, :1] | |
# mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), | |
# 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) | |
# blur = qsize * 0.02 | |
# img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
# img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
# img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
# quad += pad[:2] | |
# Transform. | |
quad = (quad + 0.5).flatten() | |
lx = max(min(quad[0], quad[2]), 0) | |
ly = max(min(quad[1], quad[7]), 0) | |
rx = min(max(quad[4], quad[6]), img.size[0]) | |
ry = min(max(quad[3], quad[5]), img.size[0]) | |
# Save aligned image. | |
return rsize, crop, [lx, ly, rx, ry] | |
def crop(self, img_np_list, still=False, xsize=512): # first frame for all video | |
img_np = img_np_list[0] | |
lm = self.get_landmark(img_np) | |
if lm is None: | |
raise 'can not detect the landmark from source image' | |
rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) | |
clx, cly, crx, cry = crop | |
lx, ly, rx, ry = quad | |
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) | |
for _i in range(len(img_np_list)): | |
_inp = img_np_list[_i] | |
_inp = cv2.resize(_inp, (rsize[0], rsize[1])) | |
_inp = _inp[cly:cry, clx:crx] | |
if not still: | |
_inp = _inp[ly:ry, lx:rx] | |
img_np_list[_i] = _inp | |
return img_np_list, crop, quad | |